Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum cryptography put to work for electric grid security

15.02.2013
LANL's quantum cryptography team successfully completed the first-ever demonstration of securing control data for electric grids using quantum cryptography.
Recently a Los Alamos National Laboratory quantum cryptography (QC) team successfully completed the first-ever demonstration of securing control data for electric grids using quantum cryptography.

The demonstration was performed in the electric grid test bed that is part of the Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) project at the University of Illinois Urbana-Champaign (UIUC) that was set up under the Department of Energy’s Cyber Security for Energy Delivery Systems program in the Office of Electricity Delivery and Energy Reliability.

Novel methods for controlling the electric grid are needed to accommodate new energy sources such as renewables whose availability can fluctuate on short time scales. This requires transmission of data to and from control centers; but for grid-control use, data must be both trustworthy and delivered without delays. The simultaneous requirements of strong authentication and low latency are difficult to meet with standard cryptographic techniques. New technologies that further strengthen existing cybersecurity protections are needed.

Quantum cryptography provides a means of detecting and defeating an adversary who might try to intercept or attack the communications. Single photons are used to produce secure random numbers between users, and these random numbers are then used to authenticate and encrypt the grid control data and commands. Because the random numbers are produced securely, they act as cryptographic key material for data authentication and encryption algorithms.

At the heart of the quantum-secured communications system is a unique, miniaturized QC transmitter invention, known as a QKarD, that is five orders of magnitude smaller than any competing QC device. Jane Nordholt, the Los Alamos principal investigator, put it this way: “This project shows that quantum cryptography is compatible with electric-grid control communications, providing strong security assurances rooted in the laws of physics, without introducing excessive delays in data delivery.”

A late-2012 demonstration at UIUC showed that quantum cryptography provides the necessary strong security assurances with latencies (typically 250 microseconds, including 120 microseconds to traverse the 25 kilometers of optical fiber connecting the two nodes) that are at least two orders of magnitude smaller than requirements. Further, the team’s quantum-secured communications system demonstrated that this capability could be deployed with only a single optical fiber to carry the quantum, single-photon communications signals; data packets; and commands. “Moreover, our system is scalable to multiple monitors and several control centers,” said Richard Hughes, the co-principal investigator from Los Alamos.

The TCIPG cyber-physical test bed provides a realistic environment to explore cutting-edge research and prove emerging smart grid technology in a fully customizable environment. In this demonstration, high-fidelity power simulation was leveraged using the real-time digital simulator to enable hardware in the loop power simulation to drive real phasor measurement units (PMUs), devices, deployed on today's electric grid that monitor its operation.
“The simulator provides a mechanism for proving technology in real-world scenarios,” said Tim Yardley, assistant director of test bed services. “We're not just using perfect or simulated data, so the results demonstrate true feasibility.”

The power simulation was running a well-known power-bus model that was perturbed by introducing faults, which drove the analog inputs on the connected hardware PMU. The PMU then communicated via the standard protocol to the quantum cryptography equipment, which handled the key generation, communication and encryption/decryption of the connection traversing 25 kilometers of fiber. A phasor data concentrator then collected and visualized the data.

“This demonstration represents not only a realistic power model, but also leveraged hardware, software and standard communication protocols that are already widely deployed in the energy sector,” said William H. Sanders, the Donald Biggar Willett Professor of Engineering at UIUC and principal investigator for TCIPG. “The success of the demonstration emphasizes the power of the TCIPG cyber-physical test bed and the strength of the quantum cryptography technology developed by Los Alamos.”

The Los Alamos team submitted 23 U. S. and foreign patent applications for the inventions that make quantum-secured communications possible. The Los Alamos Technology Transfer Division has already received two licensing inquiries from companies in the electric grid control sector, and the office plans an industry workshop for early 2013 when the team’s patents will be made available for licensing.

The Los Alamos team is seeking funding to develop a next-generation QKarD using integrated electro-photonics methods, which would be even smaller, more highly integrated, and open the door to a manufacturing process that would result in much lower unit costs.
About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

Nancy Ambrosiano | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>