Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting quantum bits into the fiber optic network: Launching the QFC-4-1QID project

15.10.2019

Transporting quantum information over long distances with glass fibers and paving the way for the quantum Internet: With this goal in mind, the Dutch research center QuTech and the Fraunhofer Institute for Laser Technology ILT launched the ICON project QFC-4-1QID on September 1, 2019. In this long-term strategic partnership between the research institutions, the scientists will be developing quantum frequency converters that will connect quantum processors to fiber optic networks. The new technology will be used in the world's first quantum Internet demonstrator in 2022.

“ICON – International Cooperation and Networking” is an internal funding program launched by the Fraunhofer-Gesellschaft to bring top international researchers together and to facilitate cooperation with excellent foreign research institutions on a project basis.


Parametric source for the generation of entangled photons.

© Fraunhofer ILT, Aachen, Germany / Volker Lannert


Optical parametric oscillator setup as conceptual study of a low-noise quantum frequency converter.

© Fraunhofer ILT, Aachen, Germany

Fraunhofer ILT and QuTech, the quantum institute of the Delft University of Technology and the Netherlands Organization for Applied Scientific Research TNO, are now starting to collaborate within the ICON project “Low-Noise Frequency Converters for the First Quantum Internet Demonstrator - QFC-4-1QID”.

QuTech is one of the world’s leading research centers in the fields of quantum computing and quantum internet. The first project phase will last three years and comprises joint research activities with a total volume of approx. 2.5 million euros.

Tailor-made photons connect qubits

Quantum computers will soon make it possible to perform highly complex calculations and algorithms in the shortest possible time and, thus, will revolutionize information technology. In the future, several quantum computers will be connected to a quantum internet in an absolutely secure manner creating many new possibilities such as for instance distributed quantum computing. To accomplish this, photonics is a key technology: Individual photons and quantum states can be specifically generated, manipulated and controlled using laser technology.

In the QFC-4-1QID project, the partners are developing technologies with which the wavelength or frequency of individual photons can be specifically converted without impairing quantum information. They aim to then transmit the photons through glass fibers with low loss and to couple qubits – the smallest computing units of a quantum computer – over long distances.

Low noise and high efficiency required

Designing the corresponding quantum frequency converters poses a great challenge – they must exhibit high overall efficiency and low noise in the output signal. It is a matter of converting photons emitting at a wavelength of 637 nm from nitrogen-vacancy centers in diamond, which serve as qubits at the QuTech in Delft. “For long-distance connections with the lowest possible transmission losses, these photons must be modified so that their wavelengths are in the telecommunications bands between 1500 nm and 1600 nm,” explains Florian Elsen, project manager and coordinator for quantum technology at Fraunhofer ILT.

So far, only the basic principle of quantum frequency converters has been demonstrated. The frequency converters with specifications relevant to the application will be implemented in the QFC-4-1QID project in the first step using laboratory setups. This will be followed later by the development of prototypes and integrated components – for example in funded follow-up projects and R&D collaborations with industry partners.

On the way to quantum Internet with QuTech

The world's first quantum internet demonstrator of the QuTech Collaboration (1QID) will connect four cities in the Netherlands in 2022, each with access to a common quantum system. In 2014, the TU Delft and the Dutch organization TNO founded the research center Qutech, which serves both the scientific and engineering sectors.

By participating in the new ICON project, the Fraunhofer-Gesellschaft is helping to create the vital technological prerequisites for the first quantum internet and positioning itself as a sought-after international research partner in the field of new quantum technologies.

Quantum Technologies at “AKL‘20 – International Laser Technology Congress”

Interested visitors can gain further insight into current research at an expert forum on current quantum technologies at “AKL'20 – International Laser Technology Congress” on May 6, 2020 in Aachen, Germany.

Wissenschaftliche Ansprechpartner:

Florian Elsen M.Sc.
Coordinator for Quantum Technology at Fraunhofer ILT
Telephone +49 241 8906-224
florian.elsen@ilt.fraunhofer.de

Dr. Bernd Jungbluth
Group Leader Non-linear Optics and Tunable Lasers
Telephone +49 241 8906-414
bernd.jungbluth@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html
http://www.lasercongress.org/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Physics and Astronomy:

nachricht TU Graz researchers develop new 3D printing for the direct production of nanostructures
13.11.2019 | Technische Universität Graz

nachricht A new approach to the hunt for dark matter
13.11.2019 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>