Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting quantum bits into the fiber optic network: Launching the QFC-4-1QID project

15.10.2019

Transporting quantum information over long distances with glass fibers and paving the way for the quantum Internet: With this goal in mind, the Dutch research center QuTech and the Fraunhofer Institute for Laser Technology ILT launched the ICON project QFC-4-1QID on September 1, 2019. In this long-term strategic partnership between the research institutions, the scientists will be developing quantum frequency converters that will connect quantum processors to fiber optic networks. The new technology will be used in the world's first quantum Internet demonstrator in 2022.

“ICON – International Cooperation and Networking” is an internal funding program launched by the Fraunhofer-Gesellschaft to bring top international researchers together and to facilitate cooperation with excellent foreign research institutions on a project basis.


Parametric source for the generation of entangled photons.

© Fraunhofer ILT, Aachen, Germany / Volker Lannert


Optical parametric oscillator setup as conceptual study of a low-noise quantum frequency converter.

© Fraunhofer ILT, Aachen, Germany

Fraunhofer ILT and QuTech, the quantum institute of the Delft University of Technology and the Netherlands Organization for Applied Scientific Research TNO, are now starting to collaborate within the ICON project “Low-Noise Frequency Converters for the First Quantum Internet Demonstrator - QFC-4-1QID”.

QuTech is one of the world’s leading research centers in the fields of quantum computing and quantum internet. The first project phase will last three years and comprises joint research activities with a total volume of approx. 2.5 million euros.

Tailor-made photons connect qubits

Quantum computers will soon make it possible to perform highly complex calculations and algorithms in the shortest possible time and, thus, will revolutionize information technology. In the future, several quantum computers will be connected to a quantum internet in an absolutely secure manner creating many new possibilities such as for instance distributed quantum computing. To accomplish this, photonics is a key technology: Individual photons and quantum states can be specifically generated, manipulated and controlled using laser technology.

In the QFC-4-1QID project, the partners are developing technologies with which the wavelength or frequency of individual photons can be specifically converted without impairing quantum information. They aim to then transmit the photons through glass fibers with low loss and to couple qubits – the smallest computing units of a quantum computer – over long distances.

Low noise and high efficiency required

Designing the corresponding quantum frequency converters poses a great challenge – they must exhibit high overall efficiency and low noise in the output signal. It is a matter of converting photons emitting at a wavelength of 637 nm from nitrogen-vacancy centers in diamond, which serve as qubits at the QuTech in Delft. “For long-distance connections with the lowest possible transmission losses, these photons must be modified so that their wavelengths are in the telecommunications bands between 1500 nm and 1600 nm,” explains Florian Elsen, project manager and coordinator for quantum technology at Fraunhofer ILT.

So far, only the basic principle of quantum frequency converters has been demonstrated. The frequency converters with specifications relevant to the application will be implemented in the QFC-4-1QID project in the first step using laboratory setups. This will be followed later by the development of prototypes and integrated components – for example in funded follow-up projects and R&D collaborations with industry partners.

On the way to quantum Internet with QuTech

The world's first quantum internet demonstrator of the QuTech Collaboration (1QID) will connect four cities in the Netherlands in 2022, each with access to a common quantum system. In 2014, the TU Delft and the Dutch organization TNO founded the research center Qutech, which serves both the scientific and engineering sectors.

By participating in the new ICON project, the Fraunhofer-Gesellschaft is helping to create the vital technological prerequisites for the first quantum internet and positioning itself as a sought-after international research partner in the field of new quantum technologies.

Quantum Technologies at “AKL‘20 – International Laser Technology Congress”

Interested visitors can gain further insight into current research at an expert forum on current quantum technologies at “AKL'20 – International Laser Technology Congress” on May 6, 2020 in Aachen, Germany.

Wissenschaftliche Ansprechpartner:

Florian Elsen M.Sc.
Coordinator for Quantum Technology at Fraunhofer ILT
Telephone +49 241 8906-224
florian.elsen@ilt.fraunhofer.de

Dr. Bernd Jungbluth
Group Leader Non-linear Optics and Tunable Lasers
Telephone +49 241 8906-414
bernd.jungbluth@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en.html
http://www.lasercongress.org/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Physics and Astronomy:

nachricht Astronomers discover class of strange objects near our galaxy's enormous black hole
16.01.2020 | University of California - Los Angeles

nachricht MOSHEMT—innovative transistor technology reaches record frequencies
16.01.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

Mutations in donors' stem cells may cause problems for cancer patients

17.01.2020 | Health and Medicine

How decisions unfold in a zebrafish brain

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>