Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pushing the (extra cold) frontiers of superconducting science

22.10.2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties.

How cold? Lower than 0.05 Kelvin (-272°C).


Ames Laboratory has developed a method to measure magnetic properties of superconducting and magnetic materials that exhibit unusual quantum behavior at very low temperatures in high magnetic fields, by placing a tunnel diode resonator, an instrument that makes precise radio-frequency measurements of magnetic properties, in a dilution refrigerator, a cryogenic device that is able to cool samples down to milli-Kelvin temperature range.

Credit: Ames Laboratory, US Department of Energy

"For many modern (quantum) materials, to properly study the fine details of their quantum mechanical behavior you need to be cool. Cooler than was formerly thought possible," said Ruslan Prozorov, a physicist at the U.S. Department of Energy's Ames Laboratory, who specializes in developing instrumentation which measures just such things.

Prozorov and his research team have developed a method to measure magnetic properties of superconducting and magnetic materials that exhibit unusual quantum behavior at very low temperatures in high magnetic fields. The method is being used to study quantum critical behavior, mechanisms of superconductivity, magnetic frustration and phase transitions in materials, many of which were first fabricated at Ames Laboratory.

They did so by placing a tunnel diode resonator, an instrument that makes precise radio-frequency measurements of magnetic properties, in a dilution refrigerator, a cryogenic device that is able to cool samples down to milli-Kelvin temperature range. While this was already achieved before, previous works did not have the ability to apply large static magnetic fields, which is crucial for studying quantum materials.

Prozorov's group worked to overcome the technical difficulties of maintaining high-resolution magnetic measurements, while at the same time achieving ultra-cold temperatures down to 0.05 K and in magnetic fields up to 14 tesla. A similar circuit has already been used in a very high magnetic field (60 T) when the team performed the experiments at Los Alamos National Lab.

"When we first installed the dilution refrigerator, the joke was that my lab had the coldest temperatures in Iowa," said Prozorov, who conducts his research where Midwestern winters are no laughing matter. "But we were not doing this just for fun, to see how cold we could go. Many unusual quantum properties of materials can only be uncovered at these extremely low temperatures."

The group studied pairing symmetry in several unconventional superconductors, mapped a very complex phase diagram in a system with field-induced quantum critical behavior, and recently uncovered very unusual properties of a spin-ice system, "none of which would be possible without this setup," said Prozorov.

###

The research is further discussed in the paper, "Tunnel diode resonator for precision magnetic susceptibility measurements in a mK temperature range and large DC magnetic fields," authored by H. Kim, M.A. Tanatar and R. Prozorov; and published as an Editor's Pick in the Review of Scientific Instruments.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Laura Millsaps | EurekAlert!
Further information:
https://www.ameslab.gov/news/news-releases/pushing-the-extra-cold-frontiers-superconducting-science
http://dx.doi.org/10.1063/1.5048008

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>