Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsar emission map thanks to Einstein

06.09.2019

Pulsars in binary systems are affected by relativistic effects, causing the spin axes of each pulsar to change their direction with time. An MPIfR-led research team has used radio observations of the source PSR J1906+0746 to reconstruct the polarised emission over the pulsar’s magnetic pole and to predict the disappearance of the detectable emission by 2028. The experiment is the most challenging test to date of the important effect of relativistic spin precession for strongly self-gravitating bodies. The reconstructed radio beam shape has implications for the population of neutron stars and the expected rate of neutron star mergers as observed by gravitational wave detectors such as LIGO.

Pulsars are fast-spinning neutron stars that concentrate 40% more mass than the Sun – or more! – into a small sphere of only about 20 km diameter. They have extremely strong magnetic fields and emit a beam of radio waves along their magnetic axes above each of their opposite magnetic poles.


PSR J1906+0746: The relativistic effect of a pulsar‘s spin precession enables the resolution of the beam structure of the pulsar.

Gregory Desvignes & Michael Kramer, MPIfR

Due to their stable rotation, a lighthouse effect produces pulsed signals that arrive on Earth with the accuracy of an atomic clock. The large mass, the compactness of the source, and the clock-like properties allows astronomers to use them as laboratories to test Einstein’s theory of general relativity.

The theory predicts that spacetime is curved by massive bodies such as pulsars. One expected consequence is the effect of relativistic spin precession in binary pulsars. The effect arises from a misalignment of the spin vector of each pulsar with respect to the total angular momentum vector of the binary system, and is most likely caused by an asymmetric supernova explosion.

This precession causes the viewing geometry to vary, which can be tested observationally by monitoring systematic changes in the observed pulse profile.

Evidence for a variable pulse profile attributed to changes in the viewing geometry caused by spin precession have been observed and modelled in the Nobel-prize winning Hulse-Taylor binary pulsar B1913+16. Other binary pulsars also show the effect, but none of them has allowed studies at the precision and level of detail obtainable with PSR J1906+0746.

The target is a young pulsar with a spin period of 144 milliseconds in a 4-hour orbit around another neutron star in the direction of the constellation Aquila (the Eagle), pretty close to the plane of our Galaxy, the Milky Way.

“PSR J1906+0746 is a unique laboratory in which we can simultaneously constrain the radio pulsar emission physics and test Einstein’s theory of general relativity”, says Gregory Desvignes from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, the first author of the study.

The research team monitored the pulsar from 2012 to 2018 with the 305-m Arecibo radio telescope at a frequency of 1.4 GHz. Those observations were supplemented with archival data from the Nançay and Arecibo radio telescopes recorded between 2005 and 2009. In total, the available dataset comprises 47 epochs spanning from July 2005 to June 2018.

The team noticed that initially it was possible to observe the pulsar’s opposite magnetic poles, when both “Northern” and “Southern” beams (referred to as “main pulse” and “interpulse” in the study) were pointed to Earth once per rotation. With time, the Northern beam disappeared and only the Southern beam remained visible.

Based on a detailed study of the polarisation information of the received emission, it was possible to apply a 50-year old model, predicting that the polarisation properties encoded information about the geometry of the pulsar. The pulsar data validated the model and also allowed the team to measure the rate of precession with only 5% uncertainty level, tighter than the precession rate measurement in the Double Pulsar system, a reference system for such tests so far. The measured value agrees perfectly with the prediction of Einstein’s theory.

“Pulsars can provide tests of gravity that cannot be done in any other way”, adds Ingrid Stairs from the University of British Columbia in Vancouver, a co-author of the study. “This is one more beautiful example of such a test.”

Moreover, the team can predict the disappearance and reappearance of both, Northern and Southern beam of PSR J1906+0746. The Southern beam will disappear from the line of sight around 2028 and reappear between 2070 to 2090. The Northern beam should reappear around 2085–2105.

The 14-year-long experiment also provided exciting insight into the little-understood workings of pulsars themselves. The team realised that our Earth’s line of sight had crossed the magnetic pole in a North-South direction, allowing not only a map of the pulsar beam, but also a study of the conditions for radio emission right above the magnetic pole.

“ It is very gratifying that, after several decades, our line of sight is crossing a pulsar’s magnetic pole for the first time, demonstrating the validity of a model proposed in 1969”, explains Kejia Lee from the Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing, another co-author of the paper. “In contrast, the beam shape is really irregular and unexpected.”

The beam map reveals the true extent of the pulsar beam which determines the portion of sky illuminated by the beam. This parameter affects the predicted number of the Galactic double neutron stars population and, hence, the expected gravitational wave detection rate for neutron star mergers.

“The experiment took us a long time to complete”, concludes Michael Kramer, director and head of MPIfR’s “Fundamental Physics in Radio Astronomy” research department. “These days, sadly, results have to be often quick and fast, whereas this pulsar teaches us so much. Being patient and diligent has really paid off.”

Authors of the original paper in “Science” are Gregory Desvignes, Michael Kramer, Kejia Lee, Joeri van Leeuwen, Ingrid Stairs, Axel Jessner, Ismaël Cognard, Laura Kasian, Andrew Lyne and Ben W. Stappers; authors from MPIfR include Gregory Desvignes, the first author, and also Michael Kramer and Axel Jessner.

Besides MPIfR, affiliations of the authors include the Laboratoire d'études spatiales et d'instrumentation en astrophysique, Observatoire de Paris, Université Paris-Sciences-et-Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France, the Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK, the Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, People’s Republic of China, ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands, the Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands, the Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada, the Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Centre National de la Recherche Scientifique-Université d’Orléans, F-45071 Orléans, France, and the Station de radioastronomie de Nançay, Observatoire de Paris, Centre National de la Recherche Scientifique, Institut national des sciences de l’Univers, F-18330 Nançay, France.

Wissenschaftliche Ansprechpartner:

Dr. Gregory Desvignes
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +33 1 4507-7101
E-mail: desvignes@mpifr-bonn.mpg.de

Prof. Dr. Michael Kramer
Head of Research Department „Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-278
E-mail: mkramer@mpifr-bonn.mpg.de

Originalpublikation:

Gregory Desvignes et al.: Radio emission from a pulsar’s magnetic pole revealed by general relativity, in: Science, 6 September 2019 (Embargoed until 5 September 2019, 20:00 CEST / 14:00 US Eastern time).

https://www.sciencemag.org/ (after the embargo expires)

Requests for the original paper before the embargo expires:
+1-202-326-6440 or scipak@aaas.org

Weitere Informationen:

https://www.mpifr-bonn.mpg.de/4743618/desvignes-sep2019 (until the embargo expires)
https://www.mpifr-bonn.mpg.de/pressreleases/2019/7 (after the embargo expires)

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Further reports about: Einstein Pulsar Radioastronomie atomic clock general relativity neutron star

More articles from Physics and Astronomy:

nachricht Major steps forward in understanding neutrino properties
06.09.2019 | Technische Universität München

nachricht Silicon as a semiconductor: silicon carbide would be much more efficient
06.09.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Next generation video: WDR and Fraunhofer HHI present significantly improved video quality at IFA 2019

The demand for even higher resolution videos will continue to increase in the coming years. For this reason, the German public service broadcaster WDR and the Fraunhofer Heinrich Hertz Institute HHI will collaborate in the coming months to test the Video Coding possibilities offered by the next international standard VVC/H.266.

VVC/H.266 is the successor standard to HEVC/H.265. The latter is currently the most modern and efficient standard for Video Coding and is used, for example, in...

Im Focus: Nanodiamonds in the brain

The recording of images of the human brain and its therapy in neurodegenerative diseases is still a major challenge in current medical research. The so-called blood-brain barrier, a kind of filter system of the body between the blood system and the central nervous system, constrains the supply of drugs or contrast media that would allow therapy and image acquisition. Scientists at the Max Planck Institute for Polymer Research (MPI-P) have now produced tiny diamonds, so-called "nanodiamonds", which could serve as a platform for both the therapy and diagnosis of brain diseases.

The blood-brain barrier is a physiological boundary layer that works highly selectively and thus protects the brain: On the one hand, pathogens or toxins are...

Im Focus: Entanglement sent over 50 km of optical fiber

For the first time, a team led by Innsbruck physicist Ben Lanyon has sent a light particle entangled with matter over 50 km of optical fiber. This paves the way for the practical use of quantum networks and sets a milestone for a future quantum internet.

The quantum internet promises absolutely tap-proof communication and powerful distributed sensor networks for new science and technology. However, because...

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

 
Latest News

A molecular 'atlas' of animal development

06.09.2019 | Life Sciences

New study tracks sulfur-based metabolism in the open ocean

06.09.2019 | Earth Sciences

Innovative Fine-Line Screen Printing Metallization Reduces Silver Consumption for Solar Cell Contacts

06.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>