Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype developed to detect dark matter

29.09.2009
A team of researchers from the University of Zaragoza (UNIZAR) and the Institut d'Astrophysique Spatiale (IAS, in France) has developed a "scintillating bolometer", a device that the scientists will use in efforts to detect the dark matter of the Universe, and which has been tested at the Canfranc Underground Laboratory in Huesca, Spain.

"One of the biggest challenges in Physics today is to discover the true nature of dark matter, which cannot be directly observed – even though it seems to make up one-quarter of the matter of the Universe. So we have to attempt to detect it using prototypes such as the one we have developed", Eduardo García Abancéns, a researcher from the UNIZAR's Laboratory of Nuclear Physics and Astroparticles, tells SINC.

García Abancéns is one of the scientists working on the ROSEBUD project (an acronym for Rare Objects SEarch with Bolometers UndergrounD), an international collaborative initiative between the Institut d'Astrophysique Spatiale (CNRS-University of Paris-South, in France) and the University of Zaragoza, which is focusing on hunting for dark matter in the Milky Way.

The scientists have been working for the past decade on this mission at the Canfranc Underground Laboratory, in Huesca, where they have developed various cryogenic detectors (which operate at temperatures close to absolute zero: −273.15 °C). The latest is a "scintillating bolometer", a 46-gram device that, in this case, contains a crystal "scintillator", made up of bismuth, germinate and oxygen (BGO: Bi4Ge3O12), which acts as a dark matter detector.

"This detection technique is based on the simultaneous measurement of the light and heat produced by the interaction between the detector and the hypothetical WIMPs (Weakly Interacting Massive Particles) which, according to various theoretical models, explain the existence of dark matter", explains García Abancéns.

The researcher explains that the difference in the scintillation of the various particles enables this method to differentiate between the signals that the WIMPs would produce and others produced by various elements of background radiation (such as alpha, beta or gamma particles).

In order to measure the miniscule amount of heat produced, the detector must be cooled to temperatures close to absolute zero, and a cryogenic facility, reinforced with lead and polyethylene bricks and protected from cosmic radiation as it housed under the Tobazo mountain, has been installed at the Canfranc underground laboratory.

"The new scintillating bolometer has performed excellently, proving its viability as a detector in experiments to look for dark matter, and also as a gamma spectrometer (a device that measures this type of radiation) to monitor background radiation in these experiments", says García Abancéns.

The scintillating bolometer is currently at the Orsay University Centre in France, where the team is working to optimise the device's light gathering, and carrying out trials with other BGO crystals.

This study, published recently in the journal Optical Materials, is part of the European EURECA project (European Underground Rare Event Calorimeter Array). This initiative, in which 16 European institutions are taking part (including the University of Zaragoza and the IAS), aims to construct a one-tonne cryogenic detector and use it over the next decade to hunt for the dark matter of the Universe.

Methods of detecting dark matter

Direct and indirect detection methods are used to detect dark matter, which cannot be directly observed since it does not emit radiation. The former include simultaneous light and heat detection (such as the technique used by the scintillating bolometers), simultaneous heat and ionisation detection, and simultaneous light and ionisation detection, such as research into distinctive signals (the most famous being the search for an annual modulation in the dark matter signal caused by the orbiting of the Earth).

There are also indirect detection methods, where, instead of directly seeking the dark matter particles, researchers try to identify other particles, (neutrinos, photons, etc.), produced when the Universe's dark matter particles are destroyed.

References:

N. Coron, E. García, J. Gironnet, J. Leblanc, P. de Marcillac, M. Martínez, Y. Ortigoza, A. Ortiz de Solórzano, C. Pobes, J. Puimedón, T. Redon, M.L. Sarsa, L. Torres y J.A. Villar. "A BGO scintillating bolometer as dark matter detector prototype". Optical Materials 31(10): 1393-1397, 2009

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>