Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project HOP-X: Organic Detectors for X-Rays

20.02.2013
Siemens is conducting research into organic detectors for X-rays.

This technology has the potential to substantially reduce production costs and also promises better image resolution than is possible with today's detectors. The innovation involves mixing specific substances into organic detector materials.



The substances involved absorb X-ray radiation, which is converted into visible light. Siemens' global Corporate Technology department is coordinating a three-year government-funded project known as HOP-X, in which the associated technology will be developed and demonstrated.

According to experts, initial potential applications include mammography devices and conventional X-ray machines.

Most of today's X-ray detectors consist of a scintillator coating that converts X-rays into visible light and a photodiode that registers the light in pixels. The savings potential offered by this amorphous silicon-based technology is largely exhausted, however. Today's units also have a dose-measurement chamber that monitors the set dose from a position between the patient and the detector.

This chamber must not be allowed to affect the X-ray image produced. Ionization measurement chambers have been used for this application up until now. However, such chambers are not sufficiently sensitive or shadow-free for the low doses of radiation that today's X-ray machines are capable of emitting.

Organic photo detectors can improve both aspects. These detectors are based on organic plastics and can be sprayed or printed onto a substrate at a low cost. This largely decouples production costs from the detector surface area, which is not the case with crystalline detectors. The organic diodes can also be used as dose-measurement chambers. They are more sensitive than ionization measurement chambers and can be structured more easily, which means the measurement unit can be adjusted to individual patient dimensions and dose regulation can be controlled more effectively.

The problem is that organic photodiodes mostly detect visible light. That's why Siemens researchers are developing special nanoparticles that can be mixed into the organic plastic solution as scintillators. Other project partners are examining an alternative that involves admixing semiconductor nanocrystals that directly absorb X-ray light, which is forwarded to the organic detector matrix in the form of electrons. Siemens is also responsible for the design of the new photodiodes and the creation of demonstration systems. The other Hop-X partners are Merck KgaA, the Leibniz Institute for New Materials and CAN-GmbH.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: HOP-X X-ray microscopy X-rays detectors organic farms visible light

More articles from Physics and Astronomy:

nachricht New method gives microscope a boost in resolution
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A new 'spin' on kagome lattices
10.12.2018 | Boston College

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

ETRI exchanged quantum information on daylight in a free-space quantum key distribution

10.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>