Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professors' super waterproof surfaces cause water to bounce like a ball

21.05.2014

Research on super-hydrophobic surfaces could result in cleaner, more efficient power

In a basement lab on BYU’s campus, mechanical engineering professor Julie Crockett analyzes water as it bounces like a ball and rolls down a ramp.


A droplet of water beads up on top of a hydrophobic surface. Water beads up even more on super-hydrophobic surfaces

This phenomenon occurs because Crockett and her colleague Dan Maynes have created a sloped channel that is super-hydrophobic, or a surface that is extremely difficult to wet. In layman’s terms, it’s the most extreme form of water proof.

Engineers like Crockett and Maynes have spent decades studying super-hydrophobic surfaces because of the plethora of real-life applications. And while some of this research has resulted in commercial products that keep shoes dry or prevent oil from building up on bolts, the duo of BYU professors are uncovering characteristics aimed at large-scale solutions for society.

Their recent study on the subject, published in academic journal Physics of Fluids, finds surfaces with a pattern of microscopic ridges or posts, combined with a hydrophobic coating, produces an even higher level of water resistance--depending on how the water hits the surface.

“Our research is geared toward helping to create the ideal super-hydrophobic surface,” Crockett said. “By characterizing the specific properties of these different surfaces, we can better pinpoint which types of surfaces are most advantageous for each application.”

Their work is critical because the growing list of applications for super-hydrophobic surfaces is extremely diverse:

  • Solar panels that don’t get dirty or can self-clean when water rolls off of them
  • Showers, tubs or toilets you don’t want hard water spots to mark
  • Bio-medical devices, such as the interior of tubes or syringes that deliver fluids to patients
  • Hulls of ships, exterior of torpedoes or submarines
  • Airplane wings that will resist wingtip icing in cold humid conditions

But where Crockett and Maynes’ research is really headed is toward cleaner and more efficient energy generation. Nearly every power plant across the country creates energy by burning coal or natural gas to create steam that expands and rotates a turbine. Once that has happened, the steam needs to be condensed back into a liquid state to be cycled back through.

If power plant condensers can be built with optimal super-hydrophobic surfaces, that process can be sped up in significant ways, saving time and lowering costs to generate power.

“If you have these surfaces, the fluid isn’t attracted to the condenser wall, and as soon as the steam starts condensing to a liquid, it just rolls right off,” Crockett said. “And so you can very, very quickly and efficiently condense a lot of gas.”

The super-hydrophobic surfaces the researchers are testing in the lab fall into one of two categories: surfaces with micro posts or surfaces with ribs and cavities one tenth the size of a human hair. (See images of each to the right.)

To create these micro-structured surfaces, the professors use a process similar to photo film development that etches patterns onto CD-sized wafers. The researchers then add a thin water-resistant film to the surfaces, such as Teflon, and use ultra-high-speed cameras to document the way water interacts when dropped, jetted or boiled on them.

They’re finding slight alterations in the width of the ribs and cavities, or the angles of the rib walls are significantly changing the water responses. All of this examination is providing a clearer picture of why super-hydrophobic surfaces do what they do.

“People know about these surfaces, but why they cause droplets or jets to behave the way they do is not particularly well known,” Crockett said. “If you don’t know why the phenomena are occurring, it may or may not actually be beneficial to you.”

Todd Hollingshead | Eurek Alert!
Further information:
http://news.byu.edu/archive14-may-superhydrophobic.aspx

Further reports about: alterations bounce cameras coating microscopic properties steam surfaces tubes

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>