Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor launches a rocket to investigate the northern lights

11.11.2008
Airplanes that fly over the northern polar region can risk losing radio contact for several hours when the northern lights are at their most active in the skies. In the near future a professor from the University of Oslo will launch a Norwegian rocket to find the explanation for this. The aim is to set up reliable warning routines.

Professor Jøran Moen at the Institute of Physics plans to fire a rocket from New Aalesund on the Svalbard archipelago some time between the end of November and beginning of December in order to solve some fundamental physics problems in the atmosphere. One of the problems is why airplanes in the polar region lose radio contact for a relatively long space of time.

Because of the curvature of Earth, the airplanes flying the polar routes have to use high-frequency radio communication. The radio signals are sent via the ionosphere, which lies between 80 and 500 kilometres above the landscape. This consists of a layer of gas with electronic particles that reflect the signals back to Earth. When the northern lights are active, they create so much turbulence in the electronic clouds that the radio signals are cut off. In addition it is not unusual for solar storms to cause inaccuracies of up to100 metres on the GPS.

Professor Moen is planning to use the registrations from the rocket to gain a better understanding of the connection between the northern lights and the disturbances to navigation systems and radio signals.

“This knowledge is essential for developing warning systems that can deal with these problems,” Jøran Moen explains.

First in the world

The rocket is nine metres long and will be fired at a suitable time between 28 November and 7 December. The flying time is calculated to last only ten minutes. The rocket will cut through the northern lights at an altitude of 350 km, and then plunge into the Barents Sea.

The rocket is equipped to measure the electric fields and waves of the northern lights, particles of low and high energy in these lights, and fine structures in the electronic clouds. Until now it has only been possible to examine the dissolution of electronic structures of a few hundred metres of a northern light. The rocket instruments from the University of Oslo can concentrate on structures down to a few metres.

“If we succeed in flying through the northern lights, we will set a world record in measurements of highly dissolved electronic precipitation in these lights.”

The rocket has a predetermined course. Before Professor Moen can push the button, he has to forecast when the northern lights will cover the rocket track. To hit the target he is depending on the assistance of experts on northern lights in New Aalesund and Longyearbyen to interpret the data from the Eiscat radar in Svalbard. He will also be helped by signals from a radar system in the vicinity of Helsinki, Finland. This can record echoes from high-frequency radio signals over Svalbard. The intensity of the echo signals will determine the extent of the northern lights activity.

Jøran Moen will also interpret the data from a NASA satellite that measures solar winds on their way from the Sun to Earth. These data can give the operators an extra hour to consider pending northern lights activity.

“We are planning to fire the rocket when the northern lights are stabilising over the course for the rocket. But the dynamics of the northern lights are so spontaneous that we can’t guarantee one hundred per cent that the rocket will target the northern lights accurately.”

In order to secure an optimal time for launching the rocket, the airspace over the North Atlantic between Iceland, Greenland, Norway and Svalbard will be closed for four hours every day for one and a half weeks.

Offshore

The rocket is filled with advanced instruments. In its basement at the Institute of Physics, the University of Oslo has developed a new instrument for measuring the fine structures of electronic clouds. The European space organisation ESA is interested in using this instrument in satellites for forecasting space weather.

“The importance of better forecasts of space weather will increase with the escalating offshore activities in the Barents Sea. Offshore is dependent on stable radio and satellite connections and precise navigation,” Professor Moen explains.

Jøran Moen | alfa
Further information:
http://www.apollon.uio.no/vis/art/2008_3/artikler/rocket
http://www.uio.no

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>