Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professor launches a rocket to investigate the northern lights

11.11.2008
Airplanes that fly over the northern polar region can risk losing radio contact for several hours when the northern lights are at their most active in the skies. In the near future a professor from the University of Oslo will launch a Norwegian rocket to find the explanation for this. The aim is to set up reliable warning routines.

Professor Jøran Moen at the Institute of Physics plans to fire a rocket from New Aalesund on the Svalbard archipelago some time between the end of November and beginning of December in order to solve some fundamental physics problems in the atmosphere. One of the problems is why airplanes in the polar region lose radio contact for a relatively long space of time.

Because of the curvature of Earth, the airplanes flying the polar routes have to use high-frequency radio communication. The radio signals are sent via the ionosphere, which lies between 80 and 500 kilometres above the landscape. This consists of a layer of gas with electronic particles that reflect the signals back to Earth. When the northern lights are active, they create so much turbulence in the electronic clouds that the radio signals are cut off. In addition it is not unusual for solar storms to cause inaccuracies of up to100 metres on the GPS.

Professor Moen is planning to use the registrations from the rocket to gain a better understanding of the connection between the northern lights and the disturbances to navigation systems and radio signals.

“This knowledge is essential for developing warning systems that can deal with these problems,” Jøran Moen explains.

First in the world

The rocket is nine metres long and will be fired at a suitable time between 28 November and 7 December. The flying time is calculated to last only ten minutes. The rocket will cut through the northern lights at an altitude of 350 km, and then plunge into the Barents Sea.

The rocket is equipped to measure the electric fields and waves of the northern lights, particles of low and high energy in these lights, and fine structures in the electronic clouds. Until now it has only been possible to examine the dissolution of electronic structures of a few hundred metres of a northern light. The rocket instruments from the University of Oslo can concentrate on structures down to a few metres.

“If we succeed in flying through the northern lights, we will set a world record in measurements of highly dissolved electronic precipitation in these lights.”

The rocket has a predetermined course. Before Professor Moen can push the button, he has to forecast when the northern lights will cover the rocket track. To hit the target he is depending on the assistance of experts on northern lights in New Aalesund and Longyearbyen to interpret the data from the Eiscat radar in Svalbard. He will also be helped by signals from a radar system in the vicinity of Helsinki, Finland. This can record echoes from high-frequency radio signals over Svalbard. The intensity of the echo signals will determine the extent of the northern lights activity.

Jøran Moen will also interpret the data from a NASA satellite that measures solar winds on their way from the Sun to Earth. These data can give the operators an extra hour to consider pending northern lights activity.

“We are planning to fire the rocket when the northern lights are stabilising over the course for the rocket. But the dynamics of the northern lights are so spontaneous that we can’t guarantee one hundred per cent that the rocket will target the northern lights accurately.”

In order to secure an optimal time for launching the rocket, the airspace over the North Atlantic between Iceland, Greenland, Norway and Svalbard will be closed for four hours every day for one and a half weeks.

Offshore

The rocket is filled with advanced instruments. In its basement at the Institute of Physics, the University of Oslo has developed a new instrument for measuring the fine structures of electronic clouds. The European space organisation ESA is interested in using this instrument in satellites for forecasting space weather.

“The importance of better forecasts of space weather will increase with the escalating offshore activities in the Barents Sea. Offshore is dependent on stable radio and satellite connections and precise navigation,” Professor Moen explains.

Jøran Moen | alfa
Further information:
http://www.apollon.uio.no/vis/art/2008_3/artikler/rocket
http://www.uio.no

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>