Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way to produce electronic components can lead to cheap and flexible electronics

25.03.2009
Flexible display screens and cheap solar cells can become a reality through research and development in organic electronics.

Physicists at Umeå University in Sweden have now developed a new and simple method for producing cheap electronic components.

"The method is simple and can therefore be of interest for future mass production of cheap electronics," says physicist Ludvig Edman.

Organic chemistry is a rapidly expanding research field that promises exciting and important applications such as flexible display screens and cheap solar cells. One attractive feature is that organic electronic materials can be processed from a solution.

"This makes it possible to paint thin films of electronic materials on flexible surfaces like paper or plastic," explains Ludvig Edman.

Electronic components with various functions can then be created by patterning the film with a specific structure. Until now it has proven to be problematic to carry out this patterning in a simple way without destroying the electronic properties of the organic material.

"We have now developed a method that enables us to create patterns in an efficient and gentle way. With the patterned organic material as a base, we have managed to produce well-functioning transistors," says Ludvig Edman.

A thin film of an organic electronic material, a so-called fullerene, is first painted on a selected surface. The parts of the film that are to remain in place are directly exposed to laser light. Then the whole film can be developed by rinsing it with a solution. A well-defined pattern then emerges where the laser light hit the surface.

A key advantage with this method of patterning is that it is both simple and scalable, which means that it can be useful in future production of cheap and flexible electronics in an assembly line process.

Other researchers involved in developing the method are Andrzej Dzwilewski and Thomas Wågberg.

The findings are presented in the industry publication Journal of the American Chemical Society (2009, 131, 4006-4011)

For more information, please contact:
Ludvig Edman, assistant professor of physics
Phone: +46-90 786 57 32; Cell phone: +46-070 2321240; ludvig.edman@physics.umu.se

Pressofficer Carina Dahlberg; +46-70-621 33 68; carina.dahlberg@adm.umu.se

Carina Dahlberg | idw
Further information:
http://www.vr.se

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>