Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pressure runs high at edge of solar system

09.10.2019

Out at the boundary of our solar system, pressure runs high. This pressure, the force plasma, magnetic fields and particles like ions, cosmic rays and electrons exert on one another when they flow and collide, was recently measured by scientists in totality for the first time -- and it was found to be greater than expected.

Using observations of galactic cosmic rays -- a type of highly energetic particle -- from NASA's Voyager spacecraft scientists calculated the total pressure from particles in the outer region of the solar system, known as the heliosheath.


This is an illustration depicting the layers of the heliosphere.

Credit: NASA/IBEX/Adler Planetarium


The Voyager spacecraft, one in the heliosheath and the other just beyond in interstellar space, took measurements as a solar even known as a global merged interaction region passed by each spacecraft four months apart. These measurements allowed scientists to calculate the total pressure in the heliosheath, as well as the speed of sound in the region.

Credit: NASA's Goddard Space Flight Center/Mary Pat Hrybyk-Keith

At nearly 9 billion miles away, this region is hard to study. But the unique positioning of the Voyager spacecraft and the opportune timing of a solar event made measurements of the heliosheath possible. And the results are helping scientists understand how the Sun interacts with its surroundings.

"In adding up the pieces known from previous studies, we found our new value is still larger than what's been measured so far," said Jamie Rankin, lead author on the new study and astronomer at Princeton University in New Jersey. "It says that there are some other parts to the pressure that aren't being considered right now that could contribute."

On Earth we have air pressure, created by air molecules drawn down by gravity. In space there's also a pressure created by particles like ions and electrons. These particles, heated and accelerated by the Sun create a giant balloon known as the heliosphere extending millions of miles out past Pluto.

The edge of this region, where the Sun's influence is overcome by the pressures of particles from other stars and interstellar space, is where the Sun's magnetic influence ends. (Its gravitational influence extends much farther, so the solar system itself extends farther, as well.)

In order to measure the pressure in the heliosheath, the scientists used the Voyager spacecraft, which have been travelling steadily out of the solar system since 1977. At the time of the observations, Voyager 1 was already outside of the heliosphere in interstellar space, while Voyager 2 still remained in the heliosheath.

"There was really unique timing for this event because we saw it right after Voyager 1 crossed into the local interstellar space," Rankin said. "And while this is the first event that Voyager saw, there are more in the data that we can continue to look at to see how things in the heliosheath and interstellar space are changing over time."

The scientists used an event known as a global merged interaction region, which is caused by activity on the Sun. The Sun periodically flares up and releases enormous bursts of particles, like in coronal mass ejections. As a series of these events travel out into space, they can merge into a giant front, creating a wave of plasma pushed by magnetic fields.

When one such wave reached the heliosheath in 2012, it was spotted by Voyager 2. The wave caused the number of galactic cosmic rays to temporarily decrease. Four months later, the scientists saw a similar decrease in observations from Voyager 1, just across the solar system's boundary in interstellar space.

Knowing the distance between the spacecraft allowed them to calculate the pressure in the heliosheath as well as the speed of sound. In the heliosheath sound travels at around 300 kilometers per second -- a thousand times faster than it moves through air.

The scientists noted that the change in galactic cosmic rays wasn't exactly identical at both spacecraft. At Voyager 2 inside the heliosheath, the number of cosmic rays decreased in all directions around the spacecraft. But at Voyager 1, outside the solar system, only the galactic cosmic rays that were traveling perpendicular to the magnetic field in the region decreased. This asymmetry suggests that something happens as the wave transmits across the solar system's boundary.

"Trying to understand why the change in the cosmic rays is different inside and outside of the heliosheath remains an open question," Rankin said.

Studying the pressure and sound speeds in this region at the boundary of the solar system can help scientists understand how the Sun influences interstellar space. This not only informs us about our own solar system, but also about the dynamics around other stars and planetary systems.

Karen C. Fox | EurekAlert!
Further information:
https://www.nasa.gov/feature/goddard/2019/pressure-runs-high-at-edge-of-solar-system

More articles from Physics and Astronomy:

nachricht Liquifying a rocky exoplanet
09.10.2019 | Universität Bern

nachricht Cesium vapor aids in the search for dark matter
08.10.2019 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

Im Focus: A fortress of ice and snow

MOSAiC expedition begins its ice drift on a floe at 85 degrees north and 137 degrees east

After only a few days of searching, experts from the MOSAiC expedition have now found a suitable ice floe, where they will set up the research camp for their...

Im Focus: Jellyfish's 'superpowers' gained through cellular mechanism

Jellyfish are animals that possess the unique ability to regenerate body parts. A team of Japanese scientists has now revealed the cellular mechanisms that give jellyfish these remarkable "superpowers."

Their findings were published on August 26, 2019 in PeerJ.

"Currently our knowledge of biology is quite limited because most studies have been performed using so-called model animals like mice, flies, worms and fish...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Pressure runs high at edge of solar system

09.10.2019 | Physics and Astronomy

Polyamides from terpenes: Amorphous Caramid-R® and semi-crystalline Caramid-S®

09.10.2019 | Trade Fair News

How interactions between neuronal migration and outgrowth shape network architecture

09.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>