Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PPPL takes detailed look at 2-D structure of turbulence in tokamaks

16.10.2017

A key hurdle for fusion researchers is understanding turbulence, the ripples and eddies that can cause the superhot plasma that fuels fusion reactions to leak heat and particles and keep fusion from taking place. Comprehending and reducing turbulence will facilitate the development of fusion as a safe, clean and abundant source of energy for generating electricity from power plants around the world.

At the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), scientists have assembled a large database of detailed measurements of the two dimensional (2-D) structure of edge plasma turbulence made visible by a diagnostic technique known as gas puff imaging. The two dimensions, measured inside a fusion device called a tokamak, represent the radial and vertical structure of the turbulence.


Correlation analysis of three plasma discharges on NSTX for each of five different radial locations near the plasma edge. The red regions marked with a blue cross have high positive correlation around the origin point, while the blue regions marked with a yellow cross have high negative correlation.

Credit: Stewart Zweben

Step toward fuller understanding

"This study is an incremental step toward a fuller understanding of turbulence," said physicist Stewart Zweben, lead author of the research published in the journal Physics of Plasmas. "It could help us understand how turbulence functions as the main cause of leakage of plasma confinement."

Fusion occurs naturally in space, merging the light elements in plasma to release the energy that powers the sun and stars. On Earth, researchers create fusion in facilities like tokamaks, which control the hot plasma with magnetic fields. But turbulence frequently causes heat to leak from its magnetic confinement.

PPPL scientists have now delved beyond previously published characterizations of turbulence and analyzed the data to focus on the 2-D spatial correlations within the turbulence. This correlation provides clues to the origin of the turbulent behavior that causes heat and particle leakage, and will serve as an additional basis for testing computer simulations of turbulence against empirical evidence.

Studying 20 discharges of plasma

The paper studied 20 discharges of plasma chosen as a representative sample of those created in PPPL's National Spherical Torus Experiment (NSTX) prior to its recent upgrade. In each of these discharges, a gas puff illuminated the turbulence near the edge of the plasma, where turbulence is of special interest. The puffs, a source of neutral atoms that glow in response to density changes within a well-defined region, allowed researchers to see fluctuations in the density of the turbulence. A fast camera recorded the resulting light at the rate of 400,000 frames per second over an image frame size of 64 pixels wide by 80 pixels high.

Zweben and co-authors performed computational analysis of the data from the camera, determining the correlations between different regions of the frames as the turbulent eddies moved through them. "We're observing the patterns of the spatial structure," Zweben said. "You can compare it to the structure of clouds drifting by. Some large clouds can be massed together or there can be a break with just plain sky."

Detailed view of turbulence

The correlations provide a detailed view of the nature of plasma turbulence. "Simple things about turbulence like its size and time scale have long been known," said PPPL physicist Daren Stotler, a coauthor of the paper. "These simulations take a deep dive into another level to look at how turbulence in one part of the plasma varies with respect to turbulence in another part."

In the resulting graphics, a blue cross indicates the point of focus for a calculation; the red and yellow areas around the cross are regions in which the turbulence is evolving similarly to the turbulence at the focal point. Farther away, researchers found regions in which the turbulence is changing opposite to the changes at the focal point. These farther-away regions are shown as shades of blue in the graphics, with the yellow cross indicating the point with the most negative correlation.

For example, if the red and yellow images were a region of high density turbulence, the blue images indicated low density. "The density increase must come from somewhere," said Zweben. "Maybe from the blue regions."

Going forward, knowledge of these correlations could be used to predict the behavior of turbulence in magnetically confined plasma. Success of the effort could deepen understanding of a fundamental cause of the loss of heat from fusion reactions.

###

Also contributing to this study were Filippo Scotti of the Lawrence Livermore National Laboratory and J. R. Myra of Lodestar Research Corporation. Support for this work comes from the DOE Office of Science.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

John Greenwald
jgreenwa@pppl.gov
609-243-2672

 @PPPLab

http://www.pppl.gov 

John Greenwald | EurekAlert!

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>