Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PPPL physicists find clue to formation of magnetic fields around stars and galaxies

10.11.2015

An enduring astronomical mystery is how stars and galaxies acquire their magnetic fields. Physicists Jonathan Squire and Amitava Bhattacharjee at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have found a clue to the answer in the collective behavior of small magnetic disturbances. In a paper published in October in Physical Review Letters, the scientists report that small magnetic perturbations can combine to form large-scale magnetic fields just like those found throughout the universe. This research was funded by the DOE Office of Science.

Squire and Bhattacharjee analyzed the behavior of dynamos, which occur when an electrically charged fluid like plasma swirls in a way that creates and then amplifies a magnetic field. Scientists have known that plasma turbulence can create lots of small magnetic fields, but the mechanism by which those fields could produce a single large field is elusive. "We can observe magnetic fields all over the universe," said Squire. "But we currently lack a sound theoretical explanation for how they are generated."


This is an image of coronal loops on the sun that are linked to magnetic fields.

Credit: NASA/Solar Dynamics Observatory

The puzzle consists of the seeming unlikelihood of small disturbances coming together to form something large and organized. Throughout nature, order tends to dissolve into chaos, not the other way around. For instance, if you add a glob of milk to coffee, the glob will dissolve into a collection of tendrils and continue to dissipate until the milk has mixed with all of the coffee. Though not impossible, it's highly unlikely that the dissipated milk would spontaneously gather and reform the original glob.

This kind of natural organization occurs occasionally in the natural world, however. When a tornado forms, the myriad disturbances in the atmosphere during a severe storm coalesce into one giant vortex. But the tornado eventually collapses and the order disappears.

... more about:
»Galaxies »persist »phenomena »physics

Like tornados, the large-scale magnetic fields throughout the universe seem to be produced by lots of small disturbances. But unlike tornadoes, these magnetic fields persist. "Something is holding up the universe's magnetic fields for billions of years," said Amitava Bhattacharjee, head of PPPL's Theory Department and co-author of the paper. "But how exactly does the universe get these persistent magnetic properties?"

In the paper, Squire and Bhattacharjee show that under certain conditions small magnetic fields -- instead of small velocity fields, which have been studied more often -- can combine to form one large field. After running computer simulations on a PPPL computer named "Dawson," the scientists found that small disturbances can combine to form one large disturbance when there is a lot of velocity shear -- when two areas of a fluid are moving at different speeds. "We used a variety of computational and analytic methods to approach the problem from a few different angles," said Squire.

The team first used so-called statistical simulations, which create a kind of average of the behavior of the entire system. "Statistical simulations capture the properties of hundreds of simulations without actually running them all," said Bhattacharjee. The scientists also used numerical simulations that begin with initial conditions that are allowed to progress in lengthier runs.

"The results indicate that small-scale magnetic fluctuations can create large-scale magnetic fields that persist," Bhattacharjee said. "But in order to be conclusive about persistence for long times, we must run simulations for very low dissipation," a measure of energy loss. "It is impossible to run simulations for dissipation as low as those of real astrophysical plasmas, but our analytical and computational results, in the range in which they are done, strongly suggest that such dynamo action is possible."

These findings might lead to greater understanding of the behavior of many kinds of astronomical phenomena, including the disks of material that form around black holes and the 11-year solar cycle of our own sun. Computer programs cannot yet simulate these vast astronomical phenomena, so learning how to create simplified models that capture the workings of these large turbulent systems would be helpful.

###

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Raphael Rosen
rrosen@pppl.gov

 @PPPLab

http://www.pppl.gov 

Raphael Rosen | EurekAlert!

Further reports about: Galaxies persist phenomena physics

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>