Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017

Physicist Fatima Ebrahimi at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has published a paper showing that magnetic reconnection -- the process in which magnetic field lines snap together and release energy -- can be triggered by motion in nearby magnetic fields. By running computer simulations, Ebrahimi gathered evidence indicating that the wiggling of atomic particles and magnetic fields within electrically charged gas known as plasma can spark the onset of reconnection, a process that, when it occurs on the sun, can spew plasma into space.

That plasma can eventually interact with magnetic fields surrounding the Earth, endangering communications networks and power systems. In fusion facilities, reconnection can help start and confine the plasma that fuels fusion reactions. This research was funded by the DOE's Office of Science (Fusion Energy Sciences) and was published in the December issue of Physics of Plasmas.


Current sheets and plasmoids are formed during the simulation of a process called coaxial helicity injection, which could produce effective startup current-drive in spherical tokamaks.

Credit: Fatima Ebrahimi

Using a computer code developed by researchers at universities and fusion labs, Ebrahimi simulated plasma circulating within a vessel shaped like a doughnut. The vessel mimicked the doughnut shape of fusion facilities called tokamaks. The simulated facility had an opening in its floor for physicists to inject magnetic field lines that would balloon in the tokamak's interior and initiate the fusion process.

Reconnection occurred in the following way. The field lines forming the balloon created an electric current that produced three-dimensional wiggles and wobbles that pushed the open end of the balloon until it closed. At that point, magnetic reconnection occurred and turned the magnetic balloon into a magnetic bubble called a plasmoid that carries electric current.

Ebrahimi is now expanding that research. She is currently looking into how to harness the current to create and confine a fusion plasma without using a large central magnet called a solenoid.

Different conditions can set off the reconnection process. "If the strength of the field lines associated with the original magnetic balloon is not enough on its own to instigate reconnection," Ebrahimi said, "the secondary magnetic wiggles can amplify the magnetic fields at the reconnection site, triggering the event." She is also investigating the amplification of magnetic fields through these secondary three-dimensional magnetic and fluid wiggles known as the dynamo effect.

These findings on the effect of magnetic fields can have a broad impact. "The analysis and the modeling can help us better understand how the reconnection process that is triggered by magnetic perturbations in plasmas can lead to the detachment of magnetic loops on the surface of the sun, or efficient startup for fusion plasmas," Ebrahimi said.

###

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Raphael Rosen
rrosen@pppl.gov

 @PPPLab

http://www.pppl.gov 

Raphael Rosen | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>