Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PPPL diagnostic is key to world record of German fusion experiment

10.07.2018

When Germany's Wendelstein 7-X (W7-X) fusion facility set a world record for stellarators recently, a finely tuned instrument built and delivered by the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) proved the achievement. The record strongly suggests that the design of the stellarator can be developed to capture on Earth the fusion that drives the sun and stars, creating "a star in a jar" to generate a virtually unlimited supply of electric energy.

The record achieved by the W7-X, the world's largest and most advanced stellarator, was the highest "triple product" that a stellarator has ever created. The product combines the temperature, density and confinement time of a fusion facility's plasma -- the state of matter composed of free electrons and atomic nuclei that fuels fusion reactions -- to measure how close the device can come to producing self-sustaining fusion power. (The triple product was 6 x 1026 degrees x second per cubic meter -- the new stellarator record.)


PPPL physicist Novimir Pablant, right, and Andreas Langenberg of the Max Planck Institute in front of the housing for the x-ray crystal spectrometer prior to its installation in the W7-X.

Credit: Scott Massida

Spectrometer maps W7-X temperature

The achievement produced temperatures of 40 million degrees for the ions and an energy confinement time, which measures how long it takes energy to leak out across the confining magnetic fields, of 0.22 seconds. (The density was 0.8 x 1020 particles per cubic meter.)

Measuring the temperature was an x-ray imaging crystal spectrometer (XICS) built by PPPL physicist Novimir Pablant, now stationed at W7-X, and engineer Michael Mardenfeld at PPPL. "The spectrometer provided the primary measurement," said PPPL physicist Sam Lazerson, who also collaborates on W7-X experiments.

Pablant implemented the device with scientists and engineers of the Max Planck Institute of Plasma Physics (IPP), which operates the stellarator in the Baltic Sea town of Greifswald, Germany. "It has been a great experience to work closely with my colleagues here on W7-X," Pablant said.

"Installing the XICS system was a major undertaking and it has been a pleasure to work with this world-class research team. The initial results from these high-performance plasmas are very exciting, and we look forward to using the measurements from our instrument to further understanding of the confinement properties of W7-X, which is a truly unique magnetic fusion experiment."

Researchers at IPP welcomed the findings. "Without XICS we could not have confirmed the record," said Thomas Sunn Pedersen, director of stellarator edge and divertor physics at IPP. Concurred physicist Andreas Dinklage, lead author of a Nature Physics paper confirming a key feature of the W7-X physical design: "The XICS data set was one of the very valuable inputs that confirmed the physics predictions."

PPPL physicist David Gates, technical coordinator of the U.S. collaboration on W7-X, oversaw construction of the instrument. "The XICS is an incredibly precise device capable of measuring very small shifts in wavelength," said Gates. "It is a crucial part of our collaboration and we are very grateful to have the opportunity to participate in these important experiments on the groundbreaking W7-X device."

PPPL provides addedl components

PPPL has designed and delivered additional components installed on the W7-X. These include a set of large trim coils that correct errors in the magnetic field that confines W7-X plasma, and a scraper unit that will lessen the heat reaching the divertor that exhausts waste heat from the fusion facility.

The recent world record was a result of upgrades that IPP made to the stellarator following the initial phase of experiments, which began in December 2015. Improvements included new graphite tiles that enabled the higher temperatures and longer duration that produced the results. A new round of experiments is to begin this July using the new scraper unit that PPPL delivered.

Stellarators, first constructed in the 1950s under PPPL founder Lyman Spitzer, can operate in a steady state, or continuous manner, with little risk of the plasma disruptions that doughnut-shaped tokamak fusion facilities face. But tokamaks are simpler to design and build, and historically have confined plasma better, which accounts for their much wider use in fusion laboratories around the world.

An overall goal of the W7-X is to show that the twisty stellarator design can confine plasma just as well as tokamaks. When combined with the ability to operate virtually free of disruptions, such improvement could make stellarators excellent models for future fusion power plants.

###

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

John Greenwald
jgreenwa@pppl.gov
609-243-2672

 @PPPLab

http://www.pppl.gov 

John Greenwald | EurekAlert!
Further information:
https://www.pppl.gov/news/2018/07/pppl-diagnostic-key-world-record-german-fusion-experiment
http://dx.doi.org/10.1038/s41567-018-0141-9

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>