Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU-made space tool sets for inter-planetary mission

03.11.2011
A Russian spacecraft carrying the state-of-the-art space tool made by The Hong Kong Polytechnic University (PolyU) is set to embark on a one-year space journey to the Red Planet at the Baikonur Cosmodrome in Kazakhstan on 8 November 2011 Moscow time.

A Russian spacecraft carrying the state-of-the-art space tool made by The Hong Kong Polytechnic University (PolyU) is set to embark on a one-year space journey to the Red Planet at the Baikonur Cosmodrome in Kazakhstan on 8 November 2011 Moscow time.


Copyright : The Hong Kong Polytechnic University

This historical mission, also known as the "Phobos-Grunt" (which means soil of Phobos, the largest moon of Mars), marks the first strategic interplanetary collaboration between China and Russia. This is also the first interplanetary mission of Russia after the dissolution of the former Soviet Union. PolyU has been entrusted with the responsibility of designing a mission-critical space tool known as the "Soil Preparation System" (SOPSYS) for the Sino-Russian Mars Mission.

Of interest to the scientific community will be the mission's first bold attempt in the history of mankind to land on the Martian moon Phobos and collect soil sample for in-situ analysis. If the mission goes as planned, the spacecraft carrying both PolyU-made space tool and Chinese satellite Yinghuo-1 will go near the Red Planet in November 2012. The explorer will then release Yinghuo-1 into orbit around Mars; and seek to release the Lander carrying PolyU-made SOPSYS onto the surface of the potato-shaped Martian moon Phobos.

SOPSYS weighs merely 400 grams and measures slightly larger than a cigarette pack. It is capable of grinding and sifting Phobos rock to the size of less than 1mm in diameter and then from it into a plug of measured size for in situ analysis. This procedure is considered a crucial step in understanding the evolution of the universe and the formation of the planet Mars.

PolyU researchers have been working closely with IKI (Space Research Institute of the Russian Academy of Science) and the Russian aerospace company NPO Lavochkin in testing the functionality of SOPSYS under extreme environment. Dr Alexander V Zakharov, Chief Scientist of the Space Research Institute of the Russian Academy of Science and Project Scientist of the Phobos-Soil project, also visited PolyU and discussed the stringent requirements for testing the qualifying model of this tool with PolyU engineering scientists working on the project.

The aerospace authorities of China and Russia agreed to jointly probe Mars and its innermost moon Phobos, following the signing of space collaboration agreement as witnessed by Chinese President Hu Jintao and former Russian President Vladimir Putin on 26 March 2007 during a state visit of Chairman Hu to Russia. Apart from in-situ analysis, the probe will also be making a Mars-Earth return journey to study the soil sample and the effect of cosmic radiation on the Life capsule containing bacteria onboard the spacecraft.

This collaboration with Russian Space Agency is made possible with the unremitting efforts of PolyU Fellow Dr Ng Tze-chuen, who is a dentist by profession; and Professor Yung Kai-leung, Associate Head of the University's Department of Industrial and Systems Engineering. They have put much effort in negotiating with space authorities and showed their experience of developing space tools and working with the Russian Space Agency and European Space Agency.

The University has a wealth of experience in developing space tools and for space agencies over the years. SOPSYS is also designed by Professor Yung and locally manufactured at the University' Industrial Centre.

The development of space tool by PolyU researchers can be dated back to 1995 with the launch of the Space Holiner Forceps for Russian astronauts working on the MIR Space Station. The Holinser Forceps, which function like a pair of dental forceps, were designed and developed by PolyU scientists and engineers from a concept initiated by Dr Ng. The idea was further developed into the Space Forceps System which consists of 70 inter-connectable components for used by astronauts in space. In 1995, four sets of Holinser Forceps were ordered by the Russian Space Agency for use by astronauts in precision soldering at the MIR Space Station.

In 2003, PolyU scientists also designed and developed the Mars Rock Corer which was carried onboard the Beagle 2 Lander in a spacecraft of the European Space Agency's Mars Express Mission. Although the Beagle 2 Lander reportedly crashed on the surface of Mars, PolyU researchers never give up their dream for space exploration. Professor Yung is also involved in designing the "Camera Pointing System" for Phase 2 of China's lunar exploration programme, which will be carried on board the Chang'e-3 spacecraft scheduled to be launched towards the end of 2012.

Press contact: Mr Wilfred Lai
Division Head (Media and Community Relations)
Tel: (852) 2766 5218
Email: pawilfred@inet.polyu.edu.hk

Associated links
http://www.polyu.edu.hk/cpa/polyu/index.php?search=&press_section=&press_category=All&press_date=&mode=pressrelease&
Itemid=223&option=com_content&page=1&order=desc&orderby=news_date&press_
id=2177&lang=en

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>