Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New plasma transistor could create sharper displays

05.02.2009
By integrating a solid-state electron emitter and a microcavity plasma device, researchers at the University of Illinois have created a plasma transistor that could be used to make lighter, less expensive and higher resolution flat-panel displays.

“The new device is capable of controlling both the plasma conduction current and the light emission with an emitter voltage of 5 volts or less,” said Gary Eden, a professor of electrical and computer engineering, and director of the Laboratory for Optical Physics and Engineering at the U. of I.

At the heart of the plasma transistor is a microcavity plasma, an electronic-photonic device in which an electrically charged gas (a plasma) is contained within a microscopic cavity. Power is supplied by two electrodes at voltages of up to 200 volts.

Eden and graduate student Kuo-Feng (Kevin) Chen fabricated the plasma transistor from copper-clad laminate into which a microcavity 500 microns in diameter was produced by standard photolithographic techniques. The solid-state electron emitter was made from a silicon wafer, topped with a thin layer of silicon dioxide.

The microcavity is approximately the diameter of a human hair, and is filled with a small amount of gas. When excited by electrons, atoms in the plasma radiate light. The color of light depends on what gas is placed in the microcavity. Neon emits red light, for example, and argon emits blue light.

Around the plasma is a thin boundary layer called the sheath. Within the sheath, electrical current is carried not by negatively charged electrons, but instead by positively charged ions. Much heavier than electrons and therefore harder to accelerate, the ions require a large electric field generated by a large voltage drop across the sheath.

The intense electric field within the plasma sheath also promotes electron transport, said Eden, who also is a researcher at the university’s Coordinated Science Laboratory and at the Micro and Nanotechnology Laboratory. “By injecting electrons from the emitter into the sheath, we can significantly increase the flow of electrons through the plasma, which increases the plasma’s conductivity and light emission.”

While the microcavity plasma still requires up to 200 volts to emit light and conduct current, the current and light emission can be controlled by an electron emitter operating at 5 volts or less, Eden said. The current that is sent through the sheath to the bulk plasma determines how much current is carried by the two electrodes driving the microplasma.

In previous work, Eden’s team created flat-panel plasma lamps out of two sheets of aluminum foil separated by a thin dielectric layer of clear aluminum oxide. More than 250,000 lamps can be packed into a single panel. And, because microcavity plasmas operate at atmospheric pressure, thick pieces of glass are not needed to seal them. The lightweight plasma panels are less than 1 millimeter thick.

“Being able to control each microcavity plasma independently could turn our plasma panel into a less expensive and higher resolution plasma display,” Eden said. “The plasma transistor also could be used in applications where you want to use a small voltage to control a great deal of power.”

Eden and Chen described the plasma transistor in the journal Applied Physics Letters. The researchers have applied for a patent.

The work was supported by the U.S. Air Force Office of Scientific Research.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0204transistor.html

More articles from Physics and Astronomy:

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht All in the family: Kin of gravitational wave source discovered
16.10.2018 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>