Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasma experiment demonstrates admirable self-control

14.11.2013
Researchers exploit plasma self-organization as a path to economical fusion power

A team of Chinese and American scientists has learned how to maintain high fusion performance under steady conditions by exploiting a characteristic of the plasma itself: the plasma self-generates much of the electrical current needed for plasma containment in a tokamak fusion reactor. This self-generated, or "bootstrap," current has significant implications for the cost-effectiveness of fusion power.

Magnetic fusion energy research uses magnetic fields to confine the fusion fuel in the form of a plasma (ionized gas) while it is heated to the very high temperatures (more than 100 million degrees) necessary for the ions to fuse and release excess energy that can then be turned into electricity.

The most developed approach uses the tokamak magnetic confinement geometry (a torus shaped vessel), and it is the basis for ITER, a 500-MW heat generating fusion plant currently being built in France by a consortium of seven parties—China, the European Union, India, Japan, Russia, South Korea and the United States.

In the tokamak configuration, the confining magnetic field is generated by external coils and by an electric current flowing within the plasma. The cost of driving these currents has a strong impact on the economic attractiveness of a fusion reactor based on the tokamak approach. One step to minimizing this cost is to make the external coils of superconducting wire.

The second step is to take full advantage of a surprising feature of the tokamak configuration: under certain conditions the electric current in the plasma can be generated by the plasma itself ("bootstrap" current).

The recent joint experiment, carried out on the DIII-D National Fusion Facility at General Atomics in San Diego, involved scientists from the DIII-D tokamak and from the Experimental Advanced Superconducting Tokamak (EAST), a fusion energy research facility at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in Hefei, China.

Building on earlier DIII-D work, the experiment found that it is feasible for a tokamak to operate reliably at high fusion performance with most (more than 85 percent) of its plasma current consisting of bootstrap current. These conditions were maintained for several seconds, beyond the characteristic time scale of the plasma current evolution, and limited only by DIII-D pulse length constraints.

"It is often said that a plasma with a high fraction of self-generated (bootstrap) current would be difficult to control. However, these experiments show that a high bootstrap fraction plasma is very stable against transients: the plasma seems to 'like' a state where a large fraction of the current is self-generated," said Dr. Andrea Garofalo, General Atomics scientist and co-leader of the joint experiment.

These results build the foundation for follow-up experiments to be conducted on EAST, where the superconducting coils enable extension to very long pulse, and verification of the compatibility of this regime with reactor relevant boundary conditions.

ASIPP Director Prof. Jiangang Li remarked, "After the successful joint experiments in DIII-D, I am fully convinced that the DIII-D results can be reproduced on EAST in the near future, which will help us achieve the demonstration of high fusion performance in long pulse tokamak discharges."

Research Contact:
Andrea Garofalo
General Atomics
(858) 455-2123
garofalo@fusion.gat.com

James Riordon | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>