Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New planet-weighing technique found

28.06.2012
Although there have been about 800 extra-solar planets discovered so far in our galaxy, the precise masses of the majority of them are still unknown, as the most-common planet-finding technique provides only a general idea of an object's mass.

Previously, the only way to determine a planet's exact mass was if it transits—has an orbit that periodically eclipses that of its host star. Former Carnegie scientist Mercedes López-Morales has, for the first time, determined the mass of a non-transiting planet. The work is published by Astrophysical Journal Letters.

Knowing a body's mass is essential first to confirm it is a planet and if so, to determine whether it is rocky and possibly habitable or large and gassy. Until now, only the masses of transiting planets have been measured. Transiting planets are also the only type of extra-solar objects on which atmospheres have been detected.

López-Morales, along with her colleagues Florian Rodler and Ignasi Ribas of the Institute of Space Sciences, ICE (CSIC-IEEC, in Barcelona, Spain) measured the exact mass of a non-transiting planet. They did this using a new method that involves studying the carbon monoxide signature of the planet's atmosphere—detecting, in the process, the atmosphere of this non-transiting planet.

The planet is called Tau Boo b, located in the constellation of Bootes, and it orbits a star about 50 light years from Earth that's bright enough to be visible to the naked eye. The planet is similar in size to Jupiter and is so close to its star (only 8 stellar radii), that a year for this planet asts only 3.3 Earth days. Furthermore, its surface temperature reaches 1,500 ° C, making it inhospitable to life.

Discovered in 1996, Tau Boo b was one of the first planets originally detected by the radial velocity method. This planet does not transit, but its presence and characteristics were initially determined by the wobble of its host star. This technique only provides a rough indication of a detected planet's mass.

In June 2011, López-Morales' team conducted five hours of observations at near infrared wavelength (2.3 microns). They obtained data from the high-resolution spectrograph CRIRES, an instrument mounted on one of the four 8.2m Very Large Telescopes (VLT) of the European Southern Observatory (ESO) in Chile.

The observations and subsequent data analysis revealed the presence of carbon monoxide in the planet's atmosphere. In addition, by studying the planet's orbital motion through the displacement of spectral lines of carbon monoxide, the team was able to calculate its exact mass—5.6 times Jupiter—a first using this particular method, and also a first for a non-transiting planet.

An independent study conducted by researchers at the University of Leiden in the Netherlands obtained a similar result for the same planetary system, confirming the potential of this technique.

"This method represents a strong advance in the field of exoplanets," said Lopez-Morales. "It opens a new path to determine masses of exoplanets and the composition of their atmospheres"

The research team expects many more planets will be weighted using this new technique. They are also convinced that in the future, they will be able to detect molecules that are associated with the presence of life in non-transiting distant planets."

This work has been partially supported by the NSF.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Mercedes López-Morales | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>