Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Planet Population is Plentiful

Using gravitational microlensing, research team shows exoplanets are virtually everywhere

There is on average at least one planet orbiting every star in the Milky Way. This remarkable conclusion comes from an international team of astronomers, including leading scientists from the Zentrum für Astronomie der Universität Heidelberg (ZAH), who used a method known as gravitational microlensing. After a six-year search that surveyed millions of stars, the researchers conclude from their comprehensive statistical analysis that planets orbiting stars, or “exoplanets”, are the rule rather than the exception. The results will appear in the journal “Nature“ on 12 January 2012.

This artists’s cartoon view gives an impression of how common planets are around the stars in the Milky Way. The planets, their orbits and their host stars are all vastly magnified compared to their real separations. A six-year search that surveyed millions of stars using the microlensing technique concluded that planets around stars are the rule rather than the exception. The average number of planets per star is greater than one.
ESO/M. Kornmesser

Over the past 16 years, astronomers have detected more than 700 exoplanets and have started to probe the spectra and atmospheres of several of these remote worlds. One basic question remains: How commonplace are planets in our Milky Way? Most currently known exoplanets were found either by detecting the effect of the gravitational pull of the planet on its host star or by catching the planet as it passes in front of its star and slightly dims it. Both of these techniques, i.e., the radial velocity and transit methods, are most sensitive to planets that are either very massive or close to their stars, or both. Until now many exoplanets were simply overlooked because they were beyond the limits of detection of these techniques.

Prof. Dr. Joachim Wambsganss, Director of the Centre for Astronomy of Heidelberg University, and his collaborators use another method to search for exoplanets. Gravitational microlensing reveals them by measuring the effect of their gravitational fields on the light of background stars. In this method, the star and its planet act like a lens, focussing the light rays of the background star to the observer and hence making this star appear brighter for several days. The change in brightness over time, the light curve, has a very characteristic shape. The planet’s influence is often measurable for only a few hours. This technique makes it possible to detect planets located further away from their stars and over a broader range of masses, and it is well suited for statistical analyses. Yet the probability for detection is extremely low. “In order to detect a single stellar gravitational microlensing event, the brightnesses of several million stars need to be measured several times a week. And even if all the lensing stars have a planet, this planet reveals itself in less than one percent of cases,” explains Prof. Wambsganss.

“We combed through six years of microlensing observations. Remarkably, these data show that planets are more common than stars in our Galaxy”, says the lead author of the Nature paper, Dr. Arnaud Cassan, a former postdoc of Prof. Wambsganss at the ZAH, now with the Institut d'Astrophysique de Paris (France). The results of the study are largely based on work that Dr. Cassan did during his time in Heidelberg. For the investigations, the scientists from Australia, Austria, Chile, Croatia, Denmark, France, Germany, Great Britain, Japan, New Zealand, Poland, South Africa and the US – among them researchers from the European Southern Observatory (ESO) – used data from the PLANET (Probing Lensing Anomalies NETwork) and OGLE (Optical Gravitational Lensing Experiment) observational teams.

Between 2002 and 2007, the scientists repeatedly measured the brightnesses of several million stars. They observed a total of 3,247 gravitational microlensing events generated by stars. Three of these light curves were clearly planets: one “super-Earth”, one Neptune-like planet and another with a mass similar to Jupiter. The international research team combined the data of these three discoveries with that of seven other exoplanets that had likewise been found through gravitational microlensing. Also included were a large number of stars observed over the six years where no planets were detected. According to Dr. Cassan, the non-detections were just as important for the statistical analysis as the detected planets.

By comparing the data with intensive computer simulations, the astronomers concluded that approximately one in six stars is being orbited by a Jupiter-like planet. The analysis also indicated that roughly half of all stars have planets with the mass of Neptune, and two-thirds host a “super-Earth”. The survey was sensitive to planets between 75 million to 1.5 billion kilometres from their stars and with masses ranging from five times the mass of the Earth up to ten Jupiter masses.

Original publication:
A. Cassan, D. Kubas, J.-P. Beaulieu, M. Dominik, K. Horne, J. Greenhill, J. Wambsganss, J. Menzies, A. Williams, U. G. Jørgensen, A. Udalski, D. P. Bennett, M. D. Albrow, V. Batista, S. Brillant, J. A. R. Caldwell, A. Cole, Ch. Coutures, K. H. Cook, S. Dieters, D. Dominis Prester, J. Donatowicz, P. Fouqué, K. Hill, N. Kains, S. Kane, J.-B. Marquette, R. Martin, K. R. Pollard, K. C. Sahu, C. Vinter, D. Warren, B. Watson, M. Zub, T. Sumi, M. K. Szymanski, M. Kubiak, R. Poleski, I. Soszynski, K. Ulaczyk, G. Pietrzynski & £. Wyrzykowski: One or more bound planets per Milky Way star from microlensing observations. Nature (12 January 2012).


Prof. Dr. Joachim Wambsganss

Zentrum für Astronomie der Universität Heidelberg 
Phone: +49 6221 54-1800
Carolin Liefke
ESO Science Outreach Network
House of Astronomy (Heidelberg)
Phone: +49 6221 528 226
Communications and Marketing
Press Office, phone: +49 06221 54-2311

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

Science & Research
Overview of more VideoLinks >>>