Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt study uncovers new electronic state of matter

14.02.2020

Discovery shows electrons can bind together in ways similar to how quarks combine to form neutrons and protons

A research team led by professors from the University of Pittsburgh Department of Physics and Astronomy has announced the discovery of a new electronic state of matter.


Electrons travel in cars with increasing numbers, giving rise to a conductance series that shows up in Pascal's triangle.

Credit: Yun-Yi Pai

Jeremy Levy, a distinguished professor of condensed matter physics, and Patrick Irvin, a research associate professor are coauthors of the paper "Pascal conductance series in ballistic one-dimensional LaAIO3/SrTiO3 channels."

The research focuses on measurements in one-dimensional conducting systems where electrons are found to travel without scattering in groups of two or more at a time, rather than individually.

The study was published in Science on Feb. 14. A video outlining the paper's findings can be seen here: https://www.youtube.com/watch?v=kDjGiH8OnqU&feature=youtu.be

"Normally, electrons in semiconductors or metals move and scatter, and eventually drift in one direction if you apply a voltage. But in ballistic conductors the electrons move more like cars on a highway. The advantage of that is they don't give off heat and may be used in ways that are quite different from ordinary electronics. Researchers before us have succeeded in creating this kind of ballistic conductor," explained Levy.

"The discovery we made shows that when electrons can be made to attract one another, they can form bunches of two, three, four and five electrons that literally behave like new types of particles, new forms of electronic matter."

Levy compared the finding to the way in which quarks bind together to form neutrons and protons. An important clue to uncovering the new matter was recognizing that these ballistic conductors matched a sequence within Pascal's Triangle.

"If you look along different directions of Pascal's Triangle you can see different number patterns and one of the patterns was one, three, six, 10, 15, 21. This is a sequence we noticed in our data ,so it became a challenging clue as to what was actually going on. The discovery took us some time to understand but it was because we initially did not realize we were looking at particles made up of one electron, two electrons, three electrons and so forth. If you combine all this together you get the sequence of 1,3,6,10."

Levy, who is also director of the Pittsburgh Quantum Institute, noted that the new particles feature properties related to quantum entanglement, which can potentially be used for quantum computing and quantum redistribution. He said the discovery is an exciting advancement toward the next stage of quantum physics.

"This research falls within a larger effort here in Pittsburgh to develop new science and technologies related to the second quantum revolution," he said.

"In the first quantum revolution people discovered the world around them was governed fundamentally by laws of quantum physics. That discovery led to an understanding of the periodic table, how materials behave and helped in the development of transistors, computers, MRI scanners and information technology.

"Now in the 21st century, we're looking at all the strange predictions of quantum physics and turning them around and using them. When you talk about applications, we're thinking about quantum computing, quantum teleportation, quantum communications, quantum sensing--ideas that use properties of the quantum nature of matter that were ignored before."

###

In addition to Levy and Irvin, Pitt research team members include Physics and Astronomy department assistant professors David Pekker and Roger S.K. Mong graduate students Megan Briggeman, Michelle Tomczyk, Binbin Tian, Mengchen Huang and postdoctoral fellow Anthony Tylan-Tyler.

Additional team members include Hyungwoo Lee, now at Pusan National University in South Korea, Jung-Woo Lee and Chang-Beom Eom from the University of Wisconsin-Madison, and Yuchi He from Carnegie Mellon University.

Media Contact

Deborah Todd
dmtodd@pitt.edu

http://www.pitt.edu 

Deborah Todd | EurekAlert!
Further information:
http://dx.doi.org/10.1126/science.aat6467
https://www.eurekalert.org/pub_releases/2020-02/uop-psu021320.php

More articles from Physics and Astronomy:

nachricht Electric solid propellant -- can it take the heat?
14.02.2020 | University of Illinois College of Engineering

nachricht Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique
14.02.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>