Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering space station experiment keeps reactions in suspense

11.12.2008
A revolutionary container-less chemical reactor, pioneered by the space research team at Guigné International Ltd (GIL) in Canada with scientists at the University of Bath, has been installed on the International Space Station. The reactor, named Space-DRUMS, uses beams of sound to position chemicals in mid-air so they don’t come into contact with the walls of the container.

Space-DRUMS is based on the DRUMS device (Dynamically Responding Ultrasonic Matrix System), originally developed by Professor Jacques Yves Guigné, Chief Scientist of GIL (now with PanGeo Subsea Inc) to survey the sea floor using sonar.

With participation from Professor Nick Pace from the University of Bath’s Department of Physics, and aerospace industrial associates of GIL, Professor Guigné has adapted the system to enable scientists to produce new materials in zero-gravity without using a container.

Professor Guigné, who gained his PhD at Bath and is now a Visiting Professor in the University’s Department of Physics, explained: “Space-DRUMS uses beams of sound energy to position solids or liquids which are floating in zero-gravity.

“If you’ve ever been to a really loud rock concert and stood in front of the speakers, you can actually feel the force of the sound when they turn up the volume. Space-DRUMS works like this but on a much gentler scale – the beams of sound energy work like invisible fingers that gently push the sample into the centre of the container so that it doesn’t touch the walls.

“Space-DRUMS uses 20 of these ‘fingers of sound’ arranged within a dodecahedron configured reactor such that the positions of the samples can be adjusted accurately.

“This method of acoustic levitation means there is no chemical contamination from the container, which is vital for making ultra-pure materials such as temperature-resistant ceramics used in coatings for planes and engines.”

The equipment was initially tested in a low-gravity environment created by the vertical climbing and nose-diving flight path of a KC135 aeroplane, nick-named the vomit comet, similar to that used to train astronauts.

Space-DRUMS was launched into space in partnership with NASA and installed on the International Space Station on 14 November, coinciding with the International Space Station’s 10th anniversary celebrations. The final components will be sent into orbit in July 2009, with experiments starting shortly afterwards.

Professor Nick Pace said: “We are delighted that this key step has been achieved; we have waited several years to witness this milestone.

“The most exciting thing is that we can control the experiments from Earth. Our physics students will be able to use it as part of their final year projects – there aren’t many universities that can offer their students a chance to conduct experiments in space!”

In addition to making new materials, Space-DRUMS will also be used to study the physics of turbulence, which has diverse applications such as predicting the paths of hurricanes and helping biopharmaceutical studies.

Deputy Director of the Centre for Space, Atmospheric & Oceanic Sciences at Bath, Dr Philippe Blondel explained: “Even with large computer clusters, the understanding of complex weather patterns is still limited. Using Space-DRUMS will help us to better understand the behaviour of complex systems like hurricanes, their interaction with the atmosphere and hopefully anticipate where a hurricane can go next.

“Bath is at the forefront of this pioneering technology and we are really privileged by this opportunity to do these ground-breaking experiments in space.”

Press Team | alfa
Further information:
http://www.bath.ac.uk/news/releases
http://www.bath.ac.uk/news/2008/12/11/space-drums.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>