Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinning atoms into order

29.07.2010
In an international first, physicists of the University of Innsbruck, Austria have experimentally observed a quantum phenomenon, where an arbitrarily weak perturbation causes atoms to build an organized structure from an initially unorganized one. The scientific team headed by Hanns-Christoph Nägerl has published a paper about quantum phase transitions in a one dimensional quantum lattice in the scientific journal Nature.

With a Bose-Einstein condensate of cesium atoms, scientists at the Institute for Experimental Physics of the University of Innsbruck have created one dimensional structures in an optical lattice of laser light. In these quantum lattices or wires the single atoms are aligned next to each other with laser light preventing them from breaking ranks. Delete using an external magnetic field allows the physicists to tune the interaction between the atoms with high precision and this set-up provides an ideal laboratory system for the investigation of basic physical phenomena.


Physicists can observe quantum mechanical phase transitions using ultracold atoms (yellow) in optical lattices (white surface). Originally, the existence of phase transitions was predicted for certain metals and they describe the transition from a conductor to an insulator. For weak interactions the particles are spread out over the lattice in a superfluid state (front); a deep lattice potential is necessary to confine them into single lattices (back). Uni Innsbruck


For strong interactions the particles are already structured (front) and a weak optical lattice is sufficient for immediate pinning of the atoms (back). Uni Innsbruck

“Interaction effects are much more dramatic in low-dimensional systems than in three dimensional space,“ explains Hanns-Christoph Nägerl. Thus, these structures are of high interest for physicists. It is difficult to study quantum wires in condensed matter, whereas ultracold quantum gases provide a versatile tunable laboratory system. And these favorable experimental conditions open up new avenues to investigate novel fundamental phenomena in solid-state or condensed matter physics such as quantum phase transitions.

Quantum phase transition
The Innsbruck physicists have observed a “pinning transition“ from a superfluid (“Luttinger liquid“) to an insulated phase (“Mott-insulator“). In their experiment they showed that for strongly interacting atoms an additional weak lattice potential was sufficient to pin the atoms to fixed positions along the wire (“pinning”). The atoms were cooled down to nearly absolute zero and were in their quantum mechanical ground state. “It is not thermal fluctuations that induce the phase transition,“ stresses PhD student Elmar Haller, who is also first author of the study, which has been published in the journal Nature. “In fact, the atoms are already correlated due to strong repulsive interaction and only need a small push to align regularly along the optical lattice,“ explains Haller. When the lattice is removed, the atoms return to a superfluid state.
Theoretical prediction
The phenomenon observed by the experimental physicists was proposed by three theorists two years ago, two of whom - Wilhelm Zwerger and Hans Peter Büchler – also worked at the University of Innsbruck. With theorists and experimental physicists cooperating closely and a big pool of highly qualified scientists, the internationally renowned research centre for physics in Innsbruck offers an excellent framework for the experimental physicists of the research group headed by Wittgenstein awardee Rudolf Grimm to pursue basic research in physics. This research work is funded by the Austrian Science Fund (FWF), the European Science Foundation (ESF) and by European Union research programs.

Publication: Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Elmar Haller, Russell Hart, Manfred J. Mark, Johann G. Danzl, Lukas Reichsöllner, Mattias Gustavsson, Marcello Dalmonte, Guido Pupillo, Hanns-Christoph Nägerl. Nature 29 July 2010. doi: 10.1038/nature09259 (http://dx.doi.org/10.1038/nature09259)

Contact:
Elmar Haller and Russell Hart
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507-6306 or 6376
Email: Elmar.Haller@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.ultracold.at
http://www.uibk.ac.at
http://dx.doi.org/10.1038/nature09259

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>