Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first pictures of not 1, not 2, but 3 planets orbiting a star

14.11.2008
A team of astronomers used the Keck and Gemini North telescopes on Mauna Kea in Hawaii to discover three planets in orbit around the young star HR 8799. Christian Marois (the lead author of a paper to be published in Science) and his collaborators developed an advanced computer processing technique that helped separate the planets from the much brighter light of the star. HR 8799 is located about 130 light-years from Earth and is just visible to the naked eye in the constellation of Pegasus.

These new planets are young enough that they are still glowing from heat leftover from their formation which took place approximately 60 million years ago (fresh out of the oven by astronomical standards). Since these planets take hundreds of years to orbit their host star, directly measuring their masses is not immediately possible ... we have to wait.

In the meantime, theoretical models of planetary interiors and atmospheres can be used to infer many of their properties. This type of analysis is greatly aided by the ability to take pictures of the planets orbiting HR 8799, allowing us to peer straight down into their atmospheres and measure what the conditions are like. Comparing the predictions from theory to the observed brightness across a broad range of wavelengths tells us that these planets are respectively about seven, ten, and ten times the mass of Jupiter and about 20 percent to 30 percent larger than Jupiter in diameter. The planets could be slightly more or less massive depending on their exact age.

"Knowledge of the age of HR 8799 is critical for linking the observed luminosities of the planets with their masses," commented co-author Travis Barman, an astronomer at Lowell Observatory. "The older (or younger) the planets are the more (or less) massive the planets will be. Detailed comparison with theoretical model atmospheres confirms that all three planets possess complex atmospheres with dusty clouds partially trapping and re-radiating the escaping heat."

For theorists like Barman, HR 8799 is a gold mine, allowing broad tests of predictions for planet formation, evolution, and atmospheric physics. The most exciting discoveries about these new planets are certainly still to come. Now that each planet can be individually imaged, plans are underway to take the first spectra of young planets which will allow us to study in detail their chemical compositions, cloud structures, and thermal properties.

This work appears today in Science Express and in an upcoming issue of Science.

Partial support for this work was provided by NASA to Lowell Observatory through grant NNX07AG68G S03 from the Origins of Solar Systems program and by a generous allocation of computing time at the NASA Advanced Supercomputing facilities. Support for this work was also provided by the Mount Cuba Astronomical Foundation.

contact:

Steele Wotkyns
steele@lowell.edu
(928) 233-3232
Travis Barman
barman@lowell.edu
Team Members
Christian Marois – NRC Herzberg Institute of Astrophysics, Victoria, BC
Bruce Macintosh – Lawrence Livermore National Laboratory, Livermore, CA, USA
Travis Barman – Lowell Observatory, Flagstaff, AZ, USA
Ben Zuckerman – Astronomy Department, University of California, Los Angeles, CA, USA
Jennifer Patience – School of Physics, University of Exeter, Exeter, UK
Inseok Song – University of Georgia, Athens, GA, USA
David Lafrenière – Dep't of Astronomy and Astrophysics, University of Toronto, Toronto, ON

René Doyon – Département de Physique and Observatoire du Mont Mégantic, Université de Montréal, Montréal, QC

About Lowell Observatory

Lowell Observatory is a private, non-profit research institution founded in 1894 by Percival Lowell. The Observatory has been the site of many important findings including the discovery of the large recessional velocities (redshift) of galaxies by Vesto Slipher in 1912-1914 (a result that led ultimately to the realization the universe is expanding), and the discovery of Pluto by Clyde Tombaugh in 1930. Today, Lowell's 20 astronomers use ground-based telescopes around the world, telescopes in space, and NASA planetary spacecraft to conduct research in diverse areas of astronomy and planetary science. The Observatory welcomes more than 75,000 visitors each year to its Mars Hill campus in Flagstaff, Arizona for a variety of tours, telescope viewing, and special programs. Lowell Observatory currently has four research telescopes at its Anderson Mesa dark sky site east of Flagstaff, and is building a 4-meter class research telescope, the Discovery Channel Telescope, in partnership with Discovery Communications.

Steele Wotkyns | EurekAlert!
Further information:
http://www.lowell.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>