Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physics that gets under your skin


Real-time tracking of moving micro-objects deep in the tissue demonstrated for the first time

Due to modern advances in medicine ever smaller objects are moved through the human body: nanotherapeutics, micro-implants, mini-catheters and tiny medical instruments. The next generation of minimally invasive microsurgery will enable small micro robots to move with their own drive through the body and through the tissue to transport substances and micro-objects.

Therefore, new methods must be developed to locate these micro-objects precisely and to monitor their movement. Conventional methods such as ultrasound, X-ray or magnetic resonance imaging (MRI) fail either due to insufficient resolution or due to long-term damage from radioactivity or high magnetic fields.

Prof. Oliver G. Schmidt and Dr. Mariana Medina Sanchez from the Leibniz Institute for Solid State and Materials Research Dresden (IFW) and PhD student Azaam Aziz succeeded with a decisive step here. They were able to track the movement of individual micro-objects below centimeter-thick tissue in real time.

They used the so-called multispectral optoacoustic tomography (MSOT). This technique combines the advantages of ultrasound imaging in terms of depth and resolution with the possibilities of optical methods to map molecular structures.

This allows them to clearly distinguish spectral signatures of the artificial micro-objects from those of the tissue molecules. For the investigation, the micro-objects were coated with gold nanorods. By this trick, the contrast of the signal could be significantly improved.

This made it possible for the first time to track microstructures and system components moving deeply in tissue.

Background information: The photoacoustic effect was discovered in 1881 by Alexander Graham Bell. It states that the light energy absorbed by a material is converted into an acoustic signal. Modern opto-acoustic imaging systems use high-energy pulsed lasers and high-sensitivity broadband ultrasound detectors.

By excitation of tissue with a laser pulse and the detection of sound waves, the optical absorption in the tissue can be detected and visualized. Opto-acoustic imaging is being further developed by the Munich-based medical technology company ithera Medical GmbH, which is cooperating with the IFW Dresden for this work.

Original publication: Azaam Aziz, Mariana Medina-Sánchez, Jing Claussen, Oliver G. Schmidt, Real-time optoacoustic tracking of single moving micro-objects in deep phantom and ex vivo tissues, nano letters 2019, DOI: 10.1021/acs.nanolett.9b02869

Wissenschaftliche Ansprechpartner:

Prof. Dr. Oliver G. Schmidt
Dr. Mariana Medina-Sanchez


Original publication: Azaam Aziz, Mariana Medina-Sánchez, Jing Claussen, Oliver G. Schmidt, Real-time optoacoustic tracking of single moving micro-objects in deep phantom and ex vivo tissues, nano letters 2019, DOI: 10.1021/acs.nanolett.9b02869

Weitere Informationen: Link to IFW Homepage Link to original publication

Dr. Carola Langer | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht The magic wavelength of cadmium
16.09.2019 | University of Tokyo

nachricht Tomorrow´s coolants of choice
16.09.2019 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

Science & Research
Overview of more VideoLinks >>>