Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists promise a copper revolution in nanophotonics

26.02.2016

Researchers have for the first time experimentally demonstrated that copper nanophotonic components can operate successfully in photonic devices

Researchers from the Moscow Institute of Physics and Technology (MIPT) have for the first time experimentally demonstrated that copper nanophotonic components can operate successfully in photonic devices - it was previously believed that only gold and silver components have the required properties for this.


Silicon chip with nanoscale copper plasmonic components.

Image courtesy: Moscow Institute of Physics and Technology

Copper components are not only just as good as components based on noble metals, but, unlike them, they can easily be implemented in integrated circuits using industry-standard fabrication processes. "This is a kind of revolution - using copper will solve one of the main problems in nanophotonics," say the authors of the paper. The results have been published in the scientific journal Nano Letters.

The discovery, which is revolutionary for photonics and the computers of the future, was made by researchers from the Laboratory of Nanooptics and Plasmonics at MIPT's Centre of Nanoscale Optoelectronics. They have succeeded, for the first time, in producing copper nanophotonic components, whose characteristics are just as good as that of gold components.

It is interesting to note that the scientists fabricated the copper components using the process compatible with the industry-standard manufacturing technologies that are used today to produce modern integrated circuits. This means that in the very near future copper nanophotonic components will form a basis for the development of energy-efficient light sources, ultra-sensitive sensors, as well as high-performance optoelectronic processors with several thousand cores.

The discovery was made under what is known as nanophotonics - a branch of research which aims, among other things, to replace existing components in data processing devices with more modern components by using photons instead of electrons. However, while the main component in modern electronics, the transistor, can be scaled down in size to a few nanometres, the diffraction of light limits the minimum dimensions of photonic components to the size of about the light wavelength (~1 micrometre).

Despite the fundamental nature of this so-called diffraction limit, one can overcome it by using metal-dielectric structures to create truly nanoscale photonic components. Firstly, most metals show a negative permittivity at optical frequencies, and light cannot propagate through them, penetrating to a depth of only 25 nanometres. Secondly, light may be converted into surface plasmon polaritons, surface waves propagating along the surface of a metal. This makes it possible to switch from conventional 3D photonics to 2D surface plasmon photonics, which is known as plasmonics. This gives a possibility to control light at the scale of the order of 100 nanometres, i.e. far beyond the diffraction limit.

It was previously believed that only two metals - gold and silver - could be used to build efficient nanophotonic metal-dielectric nanostructures and it was also thought that all other metals could not be an alternative to these two materials, since they exhibit strong absorption. However, in practice, creating components using gold and silver is not possible because both metals, as they are noble, do not enter into chemical reactions and therefore it is extremely difficult, expensive and in many cases simply impossible to use them to create nanostructures - the basis of modern photonics.

Researchers from MIPT's Laboratory of Nanooptics and Plasmonics have found a solution to the problem. Based on a generalization of the theory for so-called plasmonic metals, in 2012 they found that copper, as an optical material, is not only able to compete with gold, but it can also be a better alternative. Unlike gold, copper can be easily structured using wet or dry etching. This gives a possibility to make nanoscale components that are easily integrated into silicon photonic or electronic integrated circuits.

It took more than two years for the researchers to purchase the required equipment, develop the fabrication process, produce samples, conduct several independent measurements, and confirm this hypothesis experimentally. "As a result, we succeeded in fabricating copper chips with optical properties that are in no way inferior to gold-based chips," says the research leader Dmitry Fedyanin. "Furthermore, we managed to do this in a fabrication process compatible with the CMOS technology, which is the basis for all modern integrated circuits, including microprocessors. It's a kind of revolution in nanophotonics".

The researchers note that the optical properties of thin polycrystalline copper films are determined by their internal structure, and the ability to control this structure, achieve and consistently reproduce the required parameters in technological cycles is the most difficult task. However, they have managed to solve this problem demonstrating that it is possible not only to achieve the required properties with copper, but also that this can be done in nanoscale components, which can be integrated both with silicon nanoelectronics and silicon nanophotonics. "We conducted ellipsometry of the copper films and then confirmed these results using near-field scanning optical microscopy of the nanostructures. This proves that the properties of copper are not impaired during the whole process of manufacturing nanoscale plasmonic components," says Dmitry Fedyanin.

These studies provide a foundation for the practical use of copper nanophotonic and plasmonic components, which in the very near future will be used to create LEDs, nanolasers, highly sensitive sensors and transducers for mobile devices, and high performance optoelectronic processors with several tens of thousand cores for graphics cards, personal computers, and supercomputers.

Media Contact

Valerii Roizen
press@mipt.ru
7-929-992-2721

 @phystech

http://mipt.ru/en/ 

Valerii Roizen | EurekAlert!

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>