Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists at Mainz University build pilot prototype of a single ion heat engine

03.02.2014
Nano-heat engine likely to operate at high efficiency / Publication in Physical Review Letters

Scientists at Johannes Gutenberg University Mainz (JGU) and the University of Erlangen-Nuremberg are working on a heat engine that consists of just a single ion. Such a nano-heat engine could be far more efficient than, for example, a car engine or a coal-fired power plant.


A single trapped ion in a linear Paul trap with special geometry: The heat engine is being realized by the divergent bars; the squeezing is being caused by establishing special electrical fields.
source: AG Quantum, JGU

A usual heat engine transforms heat into utilizable mechanical energy with the corresponding efficiency of an Otto engine amounting to only about 25 percent, for instance. The proposed nano-heat engine consisting of a single calcium ion would be much more efficient. The main aim of the research being conducted is to better understand how thermodynamics works on very small scales. A pilot prototype of such a single-ion heat engine is currently being constructed at Mainz University.

As the physicists explain in an article recently published in the journal Physical Review Letters, the efficiency of heat engines powered by thermal heat reservoirs is determined by the second law of thermodynamics, one of the fundamental concepts in physics. It was as far back as 1824 that Frenchman Nicolas Carnot calculated the maximum possible efficiency limit of such engines, now known as the Carnot limit. In the case of the newly proposed nano-heat engine, the scientists have been theoretically able to exceed the classic Carnot limit by manipulating the heat baths and exploiting nonequlibrium states.

Calculations and simulations made about a year ago showed for the first time that the thermo-dynamic flow in an internal combustion engine could be reproduced using individual ions. The idea was to use a calcium 40 ion, which has a diameter a million times smaller than that of a human hair, for this purpose. "Individual ions can basically act as the piston and drive shaft or, in other words, represent the entire engine," explained Johannes Roßnagel of the Quantum, Atomic, and Neutron Physics (QUANTUM) work group of the JGU Institute of Physics. Individual ions have already been captured in Paul traps and, using laser beams and electrical fields, not only cooled and heated but also compressed.

"This means we are able to manipulate the pulse location distribution for optimum efficiency," added Roßnagel. "Exceeding the Carnot limit for a standard heat engine thus does not violate the second law of thermodynamics but instead demonstrates that the use of specially prepared, non-thermal heat reservoirs also makes it possible to further improve efficiency." In their publication, the physicists calculated the general Carnot limit for this situation. As the mechanical capacity of a single ion machine is extremely low, it can probably only be used in heating or cooling nano systems.

The intention is now to actually develop the proposed single ion heat engine in initial experiments and construct a prototype in the laboratory.

Publication:
Johannes Roßnagel et al.
Nanoscale Heat Engine Beyond the Carnot Limit
Physical Review Letters, 22 January 2014
DOI: 10.1103/PhysRevLett.112.030602
Images:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_waermekraftmaschine_1.jpg
Simulation of an Otto cycle of a single ion heat engine: The enclosed area pictures the produced work that is significantly increased by way of squeezing.

source: AG Quantum, JGU

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_waermekraftmaschine_2.jpg
A single trapped ion in a linear Paul trap with special geometry: The heat engine is being realized by the divergent bars; the squeezing is being caused by establishing special electrical fields.

source: AG Quantum, JGU

Further information:
Johannes Roßnagel
Quantum, Atomic, and Neutron Physics (QUANTUM) work group
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-23671
fax +49 6131 39-23428
e-mail: j.rossnagel@uni-mainz.de
Weitere Informationen:
http://arxiv.org/pdf/1308.5935v2.pdf
- Nanoscale Heat Engine Beyond the Carnot Limit
http://arxiv.org/pdf/1205.1362v1.pdf
- Single-Ion Heat Engine at Maximum Power, Physical Review Letters, November 2012

Petra Giegerich | idw
Further information:
http://www.quantenbit.de
http://www.uni-mainz.de

More articles from Physics and Astronomy:

nachricht Kiel physicists discover new effect in the interaction of plasmas with solids
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Understanding insulators with conducting edges
16.01.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Artificially produced cells communicate with each other: Models of life

17.01.2019 | Life Sciences

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>