Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists made crystal lattice from polaritons

20.03.2018

An international research team produced an analog of a solid-body crystal lattice from hybrid photon-electron quasiparticles - polaritons. In the resulting polariton lattice, certain particles' energy does not depend on their speed. At the same time, the lattice's geometry, particle concentration and polarization properties can still be modified. This opens up new perspectives for study of quantum effects and the use of optical computing. Results of the study were published in Physical Review Letters.

A solid body is formed around a crystal lattice formed by atomic nuclei. Lattice geometry may influence the relation between a particle's energy and velocity. Lattices are divided into several kinds according to their geometrical properties,. Some of them, such as the Lieb lattice, have so-called flat bands: a state of particles when they show no energy-velocity relation at all. From a formal standpoint, particles in flat bands have infinite effective mass.


This is an electronic microphotograph of the obtained polariton lattice.

Credit: ITMO University

Flat bands are of great interest for fundamental science. They are used to study superconductors, ferromagnets and other quantum phases in electrons. However, quantum phases can also be observed in light elementary particles - photons. This requires creating an artificial photonic analog of a solid body: a so-called photonic crystal with adjustable geometry. Such conditions enable scientists to observe and manage various quantum properties of particles much easier.

Physicists from ITMO University and University of Sheffield have created a photonic analogue of a Lieb lattice and confirmed that quantum effects in a photonic structure are indeed stronger."Strictly speaking, we were dealing with polaritons rather than photons", explains Dmitry Kryzhanovsky, Senior Researcher at ITMO University and professor at the University of Sheffield.

"This hybrid condition occurs when excited electrons mix with photons. Such hybrid particles interact with each other, much like electrons do in a solid body. We used polaritons to create a crystal lattice and studied their new properties. Now we know how polaritons condense in flat bands, how their interaction breaks the radiation symmetry and how their spin or polarization properties change."

Since polaritons maintain their spin rotation continuously, scientists are now able to observe polarization for a long time. Furthermore, easy control over polariton concentration in the lattice provides more options for precise management of the system.

"From a fundamental viewpoint, polariton crystals are interesting in that they provide a great variety of quantum phases and effects that we cannot study in standard crystals", says Ivan Shelykh, head of the International Laboratory of Photoprocesses in Mesoscopic Systems at ITMO University. "Polarization can serve as an information storage element. All calculations are based on a binary system. There must be 0 and 1, so to implement optical computing we need two corresponding states. Polarization, right and left, with a number of intermediate combinations, is an ideal candidate for quantum-level information processing."

A great contribution to the creation and study of the polariton crystal lattices was made by staff of the University of Sheffield. Professor Maurice Skolnick from Sheffield heads a megagrant project on hybrid states of light together with Ivan Shelykh. "All the experiments were carried out in Sheffield, while theoretical modeling and analysis of the results were done at ITMO University", says Shelykh. "I consider this work a good example of what science should look like. Results of an experiment are incomprehensible when published without any interpretation. Similarly, raw theory using unrealistic parameters is difficult to apply in practice. But here we combined theory with experiment - and we plan to keep doing it this way. Our next goal is to obtain and investigate the topological boundary conditions of such a lattice".

###

Reference: Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling. C.?E. Whittaker et al. Physical Review Letters, Mar. 2, 2018. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.097401

Media Contact

Dmitry Malkov
dvmalkov@corp.ifmo.ru
895-337-75508

 @spbifmo_en

http://en.ifmo.ru/ 

Dmitry Malkov | EurekAlert!

More articles from Physics and Astronomy:

nachricht Appreciating the classical elegance of time crystals
20.09.2019 | ETH Zurich Department of Physics

nachricht 'Nanochains' could increase battery capacity, cut charging time
20.09.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>