Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018

Scientists from Siberian Federal University (SFU) and the L. V. Kirensky Institute of Physics (SB RAS) conducted theoretical studies of hybrid Tamm plasmons. Using numerical calculations, they were able to predict the structure in which it is possible to control the wavelength of these quasiparticles by means of an external electric field or heating. The study is presented in the Journal of the Optical Society of America B.

School physics teaches that the basis of an ordinary mirror is a thin aluminum or silver foil. Glass, which is in fact a large transparent piece of ordinary silica sand, just does not allow the foil to bend and rust.


"Cats-quasiparticles" (color transferred position of cats in the electromagnetic spectrum).

Credit: Pavel Pankin

However, glass also reflects light, so a dozen layers of ordinary glass and flintg lass (a special high-reflective glass) is more expensive and high-quality analogue of a metal mirror. Such a structure is also called a one-dimensional photonic crystal. It means that the refractive index changes periodically in one direction, in this case perpendicular to the layers.

What happens if such a multilayered mirror is covered with silver? It looks like Napoleon cake, where instead of cakes - glass and flintglass, instead of top-cream, silver, and the thickness of this cake is slightly larger than a micron. In such a device, light can be locked between two mirrors - metal and multilayer. The energy of light accumulates on the boundary between the metallic and multilayer mirrors and begins to leak through the multilayer mirror. So a double mirror can pass, and not reflect light.

In such a situation, a special quasiparticle of light is formed between the mirrors - not a photon, but a Tamm plasmon. "The appearance of such a quasiparticle is possible only when the metal is coated with a multilayer mirror. In this case, it is possible to obtain a light trapped between mirrors, and one of the reflecting surfaces must necessarily be metallic. Unlike the ordinary plasmon, which is a traveling wave, Tamm plasmon represents a standing wave, that is, it does not lead to energy transfer, "the first author of the paper, Pavel Pankin of the Siberian Federal University, explains.

For many practical applications, it is very important to control the wavelength of a Tamm plasmon, its color. For example, this allows you to make a laser with a tunable frequency of radiation, rather than with a fixed frequency. For this purpose, Russian physicists proposed to connect the plasmon with a microcavity.

This was achieved by including a layer of a liquid crystal in a multilayer mirror in the model. As a result, light began to accumulate not only on the border of two mirrors, but also in this layer, - so the hybrid structure was achieved.

Earlier, in order to change the color of a Tamm plasmon, scientists had to make a new structure. Now it is sufficient to heat or electrify the liquid crystal, and the connection will cause Tamm plasmon to change color.

The Tamm plasmon allows to create lasers, optical filters, single photon sources, thermal emitters and absorbers of a new type. The authors hope that their work will expand the range of possible applications.

Media Contact

Yaroslava Zhigalova
press@sfu-kras.ru
7-391-291-2733

 @SibFUniversity

http://www.sfu-kras.ru/en 

Yaroslava Zhigalova | EurekAlert!

More articles from Physics and Astronomy:

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

nachricht Atomic parity violation research reaches new milestone
12.11.2018 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Improving understanding of how the Solar System is formed

12.11.2018 | Physics and Astronomy

Like the earthworm: new breathing material lubricates itself when needed

12.11.2018 | Materials Sciences

Atomic parity violation research reaches new milestone

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>