Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Harness Disorder in Magnetic Sensors

10.09.2008
University of Chicago scientists have discovered how to make magnetic sensors capable of operating at the high temperatures that ceramic engines in cars and aircraft of the future will require for higher operating efficiency than today's internal combustion technology.

The key to fabricating the sensors involves slightly diluting samples of a well-known semiconductor material, called indium antimonide, which is valued for its purity. Chicago’s Thomas Rosenbaum and associate Jingshi Hu, now of the Massachusetts Institute of Technology, have published their formula in the September issue of the journal Nature Materials.

Most magnetic sensors operate by detecting how a magnetic field alters the path of an electron. Conventional sensors lose this capability when subjected to temperatures reaching hundreds of degrees. Not so in the indium antimonide magnetosensors that Rosenbaum and Hu developed with support from the U.S. Department of Energy.

“This sensor would be able to function in those sorts of temperatures without any degradation,” said Rosenbaum, the John T. Wilson Distinguished Service Professor in Physics.

Rosenbaum’s research typically focuses on the properties of materials observed at the atomic level when subjected to temperatures near absolute zero (minus-460 degrees Fahrenheit). More than a decade ago, he led a team of scientists in experiments involving silver selenide and silver telluride, two materials that exhibited no magnetic response at low temperatures. But when the team introduced a tiny amount of silver (one part in 10,000) to the materials, their magnetic response skyrocketed.

In silver selenide and silver telluride, the magnetic response disappears at room temperature, which limits their technological applications. But Rosenbaum and Hu now have used two methods to recreate the effect at much higher temperatures in indium antimonide. Disordering the material—simply grinding it up and fusing it with heat—produces the effect. So does introducing impurities of just a few parts per million.

“What’s nice about it is that, first, it’s an unexpected phenomenon; and second, it’s a very useful one,” said University of Cambridge physicist Peter Littlewood. “Normally, in order to make large effects, you have to have pure samples.”

Before Rosenbaum and Hu’s latest experiments, two theories dueled to explain the effect. In 2003, Littlewood and Meera Parish, now a postdoctoral fellow at the Princeton Center for Theoretical Physics, explained the effect using classical physics, the laws of nature that govern physics above the atomic scale. Nobel laureate Alexei Abrikosov of Argonne National Laboratory devised an explanation based on quantum physics, the dominant physics at ultrasmall scales.

“We’ve shown that both theories work, just in different regimes,” Rosenbaum said.

Littlewood lauded the sequence of events as an example of how science ought to work. “There’s a discovery of a result. There’s a theory about it. Further experiments are done to test the theory. They work and that provokes another idea, and you bounce to and fro,” Littlewood said. “That’s how we like to describe science progressing. One is rarely lucky enough to do that over a long period.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>