Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists from Stuttgart prove the existence of a supersolid state of matte

09.09.2019

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely low temperatures, quantum effects can also enable other states of matter. This includes superfluids, which are characterized by a frictionless flow of atoms.


This image shows parts of the experimental laser setup used by the researchers in Stuttgart to create a supersolid from ultracold dysprosium atoms. ble

University of Stuttgart / Wolfram Scheible

Moreover, in the quantum world, particles can exist in superpositions of being unpredictably and randomly in two different locations.

It had long been conjectured that even superpositions of states of matter are possible. According to these ideas, known states of matter, such as solid or fluid, can thus be superimposed to form new states of matter with new properties.

A supersolid is exactly such a superposition state, and features both the crystalline structure of a solid and the frictionless flow of a superfluid. In such a state every atom is unpredictably and randomly either part of the solid or of the superfluid.

In the experiments in Stuttgart, the supersolid is generated from dysprosium atoms that behave like tiny magnets. These atoms are cooled down to near absolute zero (-273° Celsius). At this point, two types of interaction between atoms become important: if two atoms come very close together, they collide like billiard balls.

At the same time, they can attract or repel each other over larger distances due to the magnetic interaction. To generate a supersolid, the researchers adjusted the relationship between these two forces such that a crystalline lattice structure and superfluidity are created simultaneously.

"We were able to observe the periodicity of the crystal directly with a microscope, and tested the quantum mechanical superposition through interference experiments" explain Mingyang Guo and Fabian Böttcher, postdoc and doctoral student at the experiment.

Detection by means of sound waves
The definitive proof that the matter created in the experiment is indeed a supersolid is based on the observation of two kinds of sound waves that travel through the supersolid at different speeds. Such sound waves propagate differently in different materials – in air, for example, sound waves travel much slower than in water.

This "normal" sound wave is also present in the supersolid. However, because the supersolid is at the same time solid and fluid, a characteristic second form of sound wave can be observed, in which the crystal and the superfluid move against each other. This results in sound waves that travel at very low speeds, which the researchers in Stuttgart were able to observe for the first time in their experiment.

In recent years, several observations of a supersolid have been reported, but it later turned out that only one form of sound wave was present. "Using our experiment with ultracold dysprosium atoms, we have now succeeded for the first time in observing simultaneously all defining properties of a supersolid state" Tilman Pfau summarizes. The experiments in Stuttgart now open up the possibility to study the exotic properties of this new state of matter in unprecedented detail.

Wissenschaftliche Ansprechpartner:

Prof. Tilman Pfau, University of Stuttgart, 5th Institute of Physics,
Tel. +49 711 685-68025, E-Mail: t.pfau (at) physik.uni-stuttgart.de

Originalpublikation:

"The low-energy Goldstone mode in a trapped dipolar supersolid"
Mingyang Guo, Fabian Böttcher, Jens Hertkorn, Jan-Niklas Schmidt, Matthias Wenzel, Hans Peter Büchler, Tim Langen, Tilman Pfau
Nature, (2019)

Weitere Informationen:

https://www.nature.com/articles/s41586-019-1569-5 Original Publication
https://youtu.be/7cMuC0d0VYA Video

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Physics and Astronomy:

nachricht Scientists couple magnetization to superconductivity for quantum discoveries
09.09.2019 | DOE/Argonne National Laboratory

nachricht Major steps forward in understanding neutrino properties
06.09.2019 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

Im Focus: A molecular 'atlas' of animal development

Researchers from the University of Pennsylvania provide a molecular map of every cell in a developing animal embryo

In a paper in Science this week, Penn researchers report the first detailed molecular characterization of how every cell changes during animal embryonic...

Im Focus: Next generation video: WDR and Fraunhofer HHI present significantly improved video quality at IFA 2019

The demand for even higher resolution videos will continue to increase in the coming years. For this reason, the German public service broadcaster WDR and the Fraunhofer Heinrich Hertz Institute HHI will collaborate in the coming months to test the Video Coding possibilities offered by the next international standard VVC/H.266.

VVC/H.266 is the successor standard to HEVC/H.265. The latter is currently the most modern and efficient standard for Video Coding and is used, for example, in...

Im Focus: Nanodiamonds in the brain

The recording of images of the human brain and its therapy in neurodegenerative diseases is still a major challenge in current medical research. The so-called blood-brain barrier, a kind of filter system of the body between the blood system and the central nervous system, constrains the supply of drugs or contrast media that would allow therapy and image acquisition. Scientists at the Max Planck Institute for Polymer Research (MPI-P) have now produced tiny diamonds, so-called "nanodiamonds", which could serve as a platform for both the therapy and diagnosis of brain diseases.

The blood-brain barrier is a physiological boundary layer that works highly selectively and thus protects the brain: On the one hand, pathogens or toxins are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

 
Latest News

Physicists from Stuttgart prove the existence of a supersolid state of matte

09.09.2019 | Physics and Astronomy

World record for tandem perovskite-CIGS solar cell

09.09.2019 | Power and Electrical Engineering

Fraunhofer FHR presents innovative contributions to radar applications in the automotive sector at the IAA

09.09.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>