Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists find strange state of matter in superconducting crystal

25.08.2017

Discovery could help scientists better understand exotic behaviors of electrons

New research published this week shows a rare state of matter in which electrons in a superconducting crystal organize collectively. The findings lay the groundwork for answering one of the most compelling questions in physics: How do correlated electron systems work, and are they related to one another?


Crystalline samples of CeRhIn5 from Los Alamos were cut into microscopic, crystalline conducting paths with a focused ion beam at MPI-CPfS.

Credit: MPI CPfS


Crystalline samples of CeRhIn5 from Los Alamos were cut into microscopic, crystalline conducting paths with a focused ion beam at MPI-CPfS.

Credit: MPI CPfS

The paper, Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5, was published in the journal Nature.

Electrons in most metals act individually, free to move through a metal to conduct electric currents and heat. But in a special sample of layered cerium, rhodium and indium (CeRhIn5), scientists discovered that electrons unite to flow in the same direction (a behavior called "breaking symmetry") when in high magnetic fields of 30 tesla. Known as "electronic nematic," this is a rare state of matter between liquid and crystal.

"It's sort of like in ancient times," clarifies Phillip Moll, principal investigator of this work and leader of the Physics of Microstructured Quantum Matter Group at the Max-Planck Institute for Chemical Physics of Solids in Germany. "People would draw maps in whatever direction best served them. But this state is like the moment when the world's mapmakers unified to arbitrarily pick north as the orientation for all maps."

Scientists believe that the electronic nematicity state may be closely related to superconductivity, another strongly correlated electron state in which electrons flow with no resistance. This cerium crystal becomes a superconductor under high pressure. However, when placed in a high magnetic field, it demonstrates this electronic nematic state. Because it exhibits both behaviors, CeRhIn5 appears uniquely positioned to one-way reveal possible interactions between these two correlated electron phases.

"This fundamental question in materials in which the electrons interact was the starting point for my PhD thesis," adds Maja Bachmann, a doctoral student on the research team. "Do the electrons have to decide either to pair or to all go in one direction? In other words, are superconductivity and nematicity competitive phenomena, or could the same interaction that leads to pairing also create nematicity?"

This research featured a specialized sample fabricated from a single crystal of CeRhIn5 using focused ion beam (FIB) machining, and required experiments in both pulsed and resistive magnets. Work in the DC Field Facility's 45-tesla hybrid showed that the nematic phase appears in very high fields, beginning at 30 tesla and remaining through the hybrid's full field. Researchers wanted to understand how far this phase extended and, through experiments at the Pulsed Field Facility, found that at around 50 tesla, the nematicity vanishes, possibly even undergoing another exotic phase transition. .

But something else happened during the pulsed experiments: Researchers noticed that they could control the direction of the electrons when they tilted the field slightly. Returning back to the DC Field Facility, the scientists were able to continuously change this tilt angle while keeping the field steady at 45 tesla, a unique experimental parameter at the MagLab.

"One big advantage of the MagLab is that it offers all the state-of-the-art magnet technologies, and throughout a project, the magnet type can be changed easily if it becomes clear that a different technology was required," Moll said. "Really, the close technological, scientific and administrative integration of these very different but complementary high-field technologies was the key to this success, and is a major strength of the MagLab."

Moll's team performed additional work in the lab's 100-tesla pulsed magnet that will be featured in a future paper. The researchers are continuing to explore how the nematic phase merges into the superconducting phase, part of an ongoing project that will involve additional MagLab experiments.

###

In addition to Bachman, Moll's co-authors on the paper included F. Ronning and E.D. Bauer of Los Alamos National Laboratory; T. Helm and K. R. Shirer of the Max-Planck-Institute for Chemical Physics of Solids; and L. Balicas, M. K. Chan, B. J. Ramshaw, R. D. McDonald, F. F. Balakirev and M. Jaime of the National MagLab.

About MPI CPfS

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.

In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.

New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.

The MPI CPfS is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.

Ingrid Rothe | EurekAlert!

Further reports about: Chemical Physics Electrons MPI Max Planck Institute

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>