Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists edge closer to controlling chemical reactions

11.12.2018

A team of researchers from the Moscow Institute of Physics and Technology, and Aarhus University in Denmark has developed an algorithm for predicting the effect of an external electromagnetic field on the state of complex molecules. The algorithm, which is based on a theory developed earlier by the same team, predicts tunneling ionization rates of molecules. This refers to the probability that an electron will bypass the potential barrier and escape from its parent molecule. The new algorithm, presented in a paper in the Journal of Chemical Physics, enables researchers to look inside large polyatomic molecules, observe and potentially control electron motion therein.

Physicists use powerful lasers to reveal the electron structure of molecules. To do this, they illuminate a molecule and analyze its re-emission spectra and the products of the interaction between the molecule and the electromagnetic field of the laser pulse. These products are the photons, electrons, and ions produced when the molecule is ionized or dissociates (breaks up).


The orientation of the naphthalene molecule relative to the external electric field can be described by angles β and γ in the following manner: Electric field F is directed along axis z?, while β denotes the angle between z? and the molecular axis z, and γ is the rotation angle around axis z. The latter angle specifies an arbitrary orientation of the molecule relative to the field F. The two angles β and γ are known as Euler angles. The figure also shows two outer orbitals (a and b) of the naphthalene molecule -- that is, the areas where the two outer electrons are localized in this molecule. The outer electrons are the first to undergo ionization in the presence of an electric field.

Credit: Image courtesy of the researchers


This is a control valve.

Credit: MIPT Press Office

Previous research involving MIPT's theoretical attosecond physics group led by Oleg Tolstikhin showed that besides elucidating the electronic structure of a molecule, the same approach may enable physicists to control the electron motions in the molecule with attosecond precision. An attosecond, or a billionth of a billionth of a second, is the time it takes laser light to travel the distance comparable to the size of a small molecule.

"If you place a molecule in a field of powerful laser radiation, ionization occurs: An electron escapes the molecule," explains Andrey Dnestryan, a member of the theoretical attosecond physics group at MIPT. "The motion of the electron is then affected by the variable laser field. At some point, it may return to the parent molecular ion. The possible outcomes of their interaction are rescattering, recombination, and dissociation of the molecule. By observing these processes, we can reconstruct the motions of electrons and nuclei in molecules, which is of profound interest to modern physics."

The interest in tunneling ionization stems from its role in experiments observing electronic and nuclear motion in molecules with attosecond time resolution. For example, tunneling ionization may enable researchers to track the motions of electrons and holes -- positively charged empty spots resulting from the absence of electrons -- along the molecule. This opens up prospects for controlling their motion, which would help control the outcomes of chemical reactions in medicine, molecular biology, and other areas of science and technology. Precise calculations of tunneling ionization rates are vital to these experiments.

The tunneling ionization rate could be interpreted as the probability of an electron escaping the molecule in a particular direction. This probability depends on how the molecule is oriented relative to the external magnetic field.

Currently used theories tie tunneling ionization rates to electron behavior far away from atomic nuclei. However, the available software for quantum mechanical calculations and computational chemistry fail to predict the state of electrons in those regions. The researchers found a way around this.

"We recently managed to reformulate the asymptotic theory of tunneling ionization so that the ionization rate would be determined by electron behavior near nuclei, which can be calculated rather precisely using the methods available now," Dnestryan said.

"Until now, researchers could only calculate tunneling ionization rates for small molecules made of a few atoms. It is now possible for significantly larger molecules. In our paper, we demonstrate this by running the calculations for benzene and naphthalene," the physicist added.

The authors of the paper calculated tunneling ionization rates for several molecules as a function of their orientation relative to the external field. To perform the calculations, the team developed software, which it plans to make openly available. This will enable experimenter to rapidly determine the structure of large molecules with attosecond precision based on observed spectra of the molecules.

"This work turns the asymptotic theory of tunneling ionization, which we developed in 2011, into a powerful tool for calculating ionization rates for arbitrary polyatomic molecules. This is essential for solving a wide range of problems in strong-field laser physics and attosecond physics," Tolstikhinsaid.

###

The work was funded by the Russian Foundation for Basic Research according to the research project ? 18-32-00429.

Media Contact

Ilyana Zolotareva
shaibakova@phystech.edu
977-771-4699

 @phystech_en

https://mipt.ru/english/ 

Ilyana Zolotareva | EurekAlert!
Further information:
https://mipt.ru/english/news/physicists_edge_closer_to_controlling_chemical_reactions
http://dx.doi.org/10.1063/1.5046902

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>