Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists developed self-propelled droplets that can act as programmable micro-carriers

07.06.2018

In the life sciences, researchers are working to inject drugs or other molecules into a human body using tiny “transport vehicles.” Researchers at the Saarland University and the University of Barcelona have shown in a model system that small emulsion droplets can be used as smart carriers. They have developed a method for producing self-propelled liquid droplets capable of providing spatially and temporally controlled delivery of a “molecular load”. The study was published in “Communications Physics”.

“Using droplets as micro carriers in biomedicine, for example, is a goal that has been pursued already for some time”, says Ralf Seemann, Professor of Experimental Physics at the University of Saarland. However, these droplets could only move passively through the body, for example via the bloodstream.


Development of a Janus droplet: The fluorescent microscope images show water-ethanol droplets in an oil-surfactant mixture with a fluorescent dye (scale bar 100 µm).

Image: Menglin Li, Saarland University

For their current study on active “micro-swimmers”, the physicists from Saarbrücken experimented with a model system that developed from single phase emulsion droplets into so-called Janus droplets: They found that they can actively move and also act as a “smart” carrier for transporting and depositing a cargo.

Janus droplets consist of two different parts: a leading water-rich droplet and a trailing ethanol- and surfactant-rich droplet. The cause of the special abilities of the Janus droplets lies in their formation: they go through a total of three developmental stages, in which different interactions with the environment occur. The researchers were able to use these development steps for “programming” the droplets as active carriers.

“Starting point are homogeneous droplets, which are produced from a water-ethanol mixture. These droplets swim in an oil phase in which a surfactant is dissolved,“ explains Jean-Baptiste Fleury, who is a group leader at the department. In the first development phase, ethanol exits the droplet and dissolves in the surrounding oil phase. This results in different tensions on the surface of the droplets, which cause the so-called Marangoni flow on the surface as well as in the droplet.

“With the Marangoni effect, liquids migrate from a region of low surface tension to a region of high surface tension” explains Martin Brinkmann, who is also part of the research team, the physical principle. “During the first stage, the Marangoni flow pushes the particle forward - an active movement caused by the continual loss of ethanol into the oil phase.” At the same time, surfactants from the oil phase migrate into the drop; because they want to surround themselves preferentially with the ethanol contained therein.

Finally, water and ethanol segregate and small droplets of ethanol-surfactant mixture form in the drop, which quickly merge and, due to the flow within the droplet accumulate at the rear end. At the end of stage two, a characteristic Janus drop has formed. In the following third stage, the surfactants on the surface of the water-rich drop are still “sucked off” by the rear, ethanol-rich drop, and the surface tension at the rear part of the surface is increased.

This gradient causes the liquid on the surface of the front drop to flow into the direction of the higher surface tension and thus sets the entire Janus drop in motion. “In the course of their formation, the Janus droplets exhibit specific driving mechanisms; moreover, they result in different flow fields in the respective stages”, says Dr. Brinkmann.

The researchers from Saarbrücken have precisely explored the motion of these Janus droplets. “We can observe how they move in the experimental cell during their development, which lasts about ten to fifteen minutes, and how they interact differently with obstacles, depending on their evolution stage,” explains Dr. Fleury. The length of the individual stages of development can be controlled by the initial ethanol concentration in the droplet and its size. In order to test their abilities as carriers, the droplets in the experiment were also loaded with DNA molecules as cargo, which accumulate in the ethanol-rich phase.

“Our carrier can selectively walk along obstacles of a specific geometry and surface condition and also deliver its cargo in a targeted manner,” says Prof. Seemann, summing up the results of his work group. Thus, the study describes a first but simple example of a programmable active carrier capable of performing spatially and temporally controlled cargo delivery.

Link to the study: https://www.nature.com/articles/s42005-018-0025-4
(DOI: 10.1038/s42005-018-0025-4)

Contact:
Universität des Saarlandes – Institut für Experimental Physik
Dr. Jean-Baptiste Fleury
Tel.: +49(0) 681 302-71712
E-Mail: jean-baptiste.fleury@physik.uni-saarland.de

Dr. Martin Brinkmann
Tel.: +49(0) 681 302-71700
E-Mail: martin.brinkmann@physik.uni-saarland.de

Prof. Dr. Ralf Seemann
Tel.: +49(0) 681 302-71799
E-Mail: r.seemann@physik.uni-saarland.de

Gerhild Sieber | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

Further reports about: DNA DNA molecules droplet small droplets surface tension

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>