Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists develop world's first artificial cell-like spheres from natural proteins

18.10.2016

The team of researchers at Saarland University, led by Professor of Condensed Matter Physics Karin Jacobs, initially had something quite different in mind. Originally, the team set out to research and describe the characteristics of hydrophobins - a group of naturally occurring proteins. 'We noticed that the hydrophobins form colonies when they are placed in water.

They immediately arrange themselves into tightly packed structures at the interface between water and glass or between water and air,' explains Karin Jacobs. 'There must therefore be an attractive force acting between the individual hydrophobin molecules, otherwise they would not organize themselves into colonies.' But Professor Jacobs, research scientist Dr Hendrik Hähl and their team did not know how strong this force was.


Hydrophobins are a family of naturally occurring proteins with a hydrophilic part (blue) and a hydrophobic part (red). Like lipids, they form molecular bilayers and vesicles, which are small spherical structures with an outer bilayer boundary. In an aqueous environment (light blue), all of the water-repellent parts of the protein are located in the inside of the bilayer. In fatty or oily environments (yellow) the situation is reversed. As a result the interior of a vesicle can represent a protected space for transporting molecules that would otherwise be insoluble in the external (aqueous or oil-based) environment.

Credit: AG Jacobs

This is where the neighbouring research group led by Professor Ralf Seemann got involved. One of Seemann's research teams, which is headed by Dr Jean-Baptiste Fleury, studies processes that occur at the interfaces between two liquids. The research team set up a minute experimental arrangement with four tiny intersecting flow channels, like a crossroads, and allowed a stream of oil to flow continuously from one side of the crossing to the other.

From the other two side channels they injected 'fingers' of water which protruded into the crossing zone. As the hydrophobins tended to gather at the interface of the carrier medium, they were in this case arranged at the water-oil interface at the front of the fingers. The physicists then 'pushed' the two fingers closer and closer together in order to see when the attractive force took effect.

'At some point the two aqueous fingers suddenly coalesced to form a single stable interface consisting of two layers,' says Ralph Seemann. 'The weird thing is that it also functions the other way around, that is, when we use oil fingers to interrupt a continuous flow of water,' he explains. This finding is quite new, as up until now other molecules have only exhibited this sort of behaviour in the one or the other scenario. Normally proteins will orient themselves so that either their hydrophilic ('water loving') sides are in contact with the aqueous medium, or their hydrophobic ('water fearing') side is in contact with an oily medium. That a type of molecule can form stable bilayers in both environments is something wholly new.

Encouraged by these findings, the researchers decided to undertake a third phase of experiments to find out whether the stable bilayer could be reconfigured to form a small membrane-bound transport sac -- a vesicle. They attempted to inflate the stable membrane bilayer in a manner similar to creating a soap bubble, but using water rather than air. The experiment worked. The cell-like sphere with the outer bilayer of natural proteins was stable. 'That's something no one else has achieved,' says Jean-Baptiste Fleury, who carried out the successful experiments. Up until now it had only been possible to create monolayer membranes or vesicles from specially synthesized macromolecules. Vesicles made from a bilayer of naturally occurring proteins that can also be tailored for use in an aqueous or an oil-based environment are something quite new.

In subsequent work, the research scientists have also demonstrated that ion channels can be incorporated into these vesicles, allowing charged particles (ions) to be transported through the bilayer of hydrophobins in a manner identical to the way ions pass through the lipid bilayers of natural cells.

As a result, the physicists now have a basis for further research work, such as examining the means of achieving more precisely targeted drug delivery. In one potential scenario, the vesicles could be used to transport water-soluble molecules through an aqueous milieu or fat-soluble molecules through an oily environment. Dr Hendrik Hähl describes the method as follows: 'Essentially we are throwing a vesicle "cape" over the drug molecule. And because the "cape" is composed of naturally occurring molecules, vesicles such as these have the potential to be used in the human body.'

The results of this research work were a surprise. Originally, the goal was simply to measure the energy associated with the agglomeration of the hydrophobin molecules when they form colonies. But the discovery that hydrophobin bilayers could be formed in both orientations, opened the door to experiments designed to see whether vesicles could be formed. That one thing would lead to another in this way, offers an excellent example of the benefits of this type of basic, curiosity-driven research. 'The "discovery" of these vesicles is archetypal of this kind of fundamental research. Or to put it another way, if someone had said to us at the beginning: "Create these structures from a natural bilayer," we very probably wouldn't have succeeded,' says Professor Karin Jacobs in summary.

###

The article 'Pure Protein Bilayers and Vesicles from Native Fungal Hydrophobins' was published on October 14th 2016 in the journal Advanced Materials: http://onlinelibrary.wiley.com/doi/10.1002/adma.201602888/full.

Further information:

Prof. Dr. Karin Jacobs
Phone: 49681-302-71788
E-mail: k.jacobs@physik.uni-saarland.de

Dr. Hendrik Hähl
Phone: 49681-302-71703
E-mail: h.haehl@physik.uni-saarland.de

Prof. Dr. Ralf Seemann
Phone: 49681-302-71799
E-mail: r.seemann@physik.uni-saarland.de

Dr. Jean-Baptiste Fleury
Phone: 49681-302-71712
E-mail: jean-baptiste.fleury@physik.uni-saarland.de

http://www.uni-saarland.de 

Karin Jacobs | EurekAlert!

Further reports about: Advanced Materials artificial proteins vesicle

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>