Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists develop an innovative light source

26.01.2012
Tiny components with the ability to emit single particles of light are important for various technological innovations. Physicists of the Universities of Würzburg, Stuttgart and Ulm have made significant progress in the fabrication of such structures.

Why are researchers interested in light sources that are able to emit single particles of light? "Such light sources are a basic requirement for the development of new encryption technologies," explains Professor Jens Pflaum at the Institute of Physics of the University of Würzburg.


The innovative component with which single photons can be produced at room temperature (red arrow) is schematically represented in the diagram below and shown in action in the picture on top. Electric current passes through the circular contacts, stimulating the underlying color molecules to light up. The optically active area of the component is about two millimeters in diameter. Photo: Benedikt Stender


Chemical structure of the iridium-based molecule used by the scientists to produce single photons. Institute of Physics, University of Würzburg

Suitably equipped components would be able to ensure that data can no longer be "fished for" during transmission without such process being noticed. These components might be used, for instance, to increase the security of online payment systems – since any data manipulation would be immediately detected and the relevant counter measures could be directly implemented. This cannot be achieved with conventional light sources, such as lasers, because these always emit large quantities of identical light particles or photons as they are referred to by physicists.

Advantages of the innovative light source

An innovative component that emits single photons has now been introduced by Professor Pflaum and his cooperation partners from Stuttgart and Ulm in the prestigious journal "Nature Communications".
The innovative light source has more than just one advantage: It consists of standard materials for organic light-emitting diodes, is pretty easy to manufacture and can be electrically controlled. What's most important: It works at room temperature. So far, any comparable optical components manufactured from semiconductor materials, such as gallium arsenide, are only functional at temperatures far below the freezing point.

Single color molecules in a matrix

What's the design of the new component? "It's quite similar to the pixel of a display, familiar to everybody with a mobile phone," explains Professor Pflaum: An electrically conductive layer is applied to a substrate – in our case represented by a glass plate. Next, an organic plastic matrix, in which the individual color molecules are embedded, is added onto this layer. The matrix is then fitted with electrical contacts. If these are connected to a battery, a flow of electrical current to the color molecules is induced, stimulating them to continually fire single photons. This has been demonstrated by the physicists with photon correlation measurements.

Three crucial tricks used

Three tricks were crucial for the achievement. Number one: "We selected the right color molecules," says Maximilian Nothaft of the University of Stuttgart. The molecules have chemical structures in which three organic complexes are grouped around one central iridium atom.

Trick number two: The physicists provided for a proper distribution of the color molecules within the matrix. Too densely packed molecules would have interacted, no longer emitting single independent photons.

Trick number three: "The interface between the electrical contacts and the matrix has been well designed by us," explains Professor Jörg Wrachtrup of the University of Stuttgart. This is important for enabling the required electrons, the carriers of the electric charge, to be injected into the polymer matrix in the first place. In this case, the scientists were successful with a contact comprised of an aluminum / barium double layer.

Glimpse into the future

What are the physicists going to do next? "We shall try to deposit the matrix with the color molecules and the electrical contacts onto various materials so that we can use flexible substrates, such as plastic films," says Professor Pflaum. This can be done with a device that works like an ink jet printer, which is a standard technology that has been used in laboratories for years. The advantage of this is: The light sources can be even better positioned on a surface.

Studies funded by DFG

This success has been achieved under the umbrella of Research Group 730 ("Positioning of single nanostructures – Single quantum devices"), which is funded by the German Research Foundation (DFG). The spokesperson of the group is Professor Peter Michler of the University of Stuttgart.

"Electrically driven photon antibunching from a single molecule at room temperature", Maximilian Nothaft, Steffen Höhla, Fedor Jelezko, Norbert Frühauf, Jens Pflaum & Jörg Wrachtrup, Nature Communications 3 (628), 17 January 2012, doi:10.1038/ncomms1637

Contact

Prof. Dr. Jens Pflaum, Institute of Physics of the University of Würzburg, T +49 (0)931 31-83118, jpflaum@physik.uni-wuerzburg.de

Maximilian Nothaft and Prof. Dr. Jörg Wrachtrup, 3rd Institute of Physics of the University of Stuttgart, T +49 (0)711 685-65273, m.nothaft@physik.uni-stuttgart.de

Robert Emmerich | Julius-Maximilians-Universität W
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Astronomy student discovers 17 new planets, including Earth-sized world
28.02.2020 | University of British Columbia

nachricht Explained: Why water droplets 'bounce off the walls'
27.02.2020 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>