Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists develop an innovative light source

26.01.2012
Tiny components with the ability to emit single particles of light are important for various technological innovations. Physicists of the Universities of Würzburg, Stuttgart and Ulm have made significant progress in the fabrication of such structures.

Why are researchers interested in light sources that are able to emit single particles of light? "Such light sources are a basic requirement for the development of new encryption technologies," explains Professor Jens Pflaum at the Institute of Physics of the University of Würzburg.


The innovative component with which single photons can be produced at room temperature (red arrow) is schematically represented in the diagram below and shown in action in the picture on top. Electric current passes through the circular contacts, stimulating the underlying color molecules to light up. The optically active area of the component is about two millimeters in diameter. Photo: Benedikt Stender


Chemical structure of the iridium-based molecule used by the scientists to produce single photons. Institute of Physics, University of Würzburg

Suitably equipped components would be able to ensure that data can no longer be "fished for" during transmission without such process being noticed. These components might be used, for instance, to increase the security of online payment systems – since any data manipulation would be immediately detected and the relevant counter measures could be directly implemented. This cannot be achieved with conventional light sources, such as lasers, because these always emit large quantities of identical light particles or photons as they are referred to by physicists.

Advantages of the innovative light source

An innovative component that emits single photons has now been introduced by Professor Pflaum and his cooperation partners from Stuttgart and Ulm in the prestigious journal "Nature Communications".
The innovative light source has more than just one advantage: It consists of standard materials for organic light-emitting diodes, is pretty easy to manufacture and can be electrically controlled. What's most important: It works at room temperature. So far, any comparable optical components manufactured from semiconductor materials, such as gallium arsenide, are only functional at temperatures far below the freezing point.

Single color molecules in a matrix

What's the design of the new component? "It's quite similar to the pixel of a display, familiar to everybody with a mobile phone," explains Professor Pflaum: An electrically conductive layer is applied to a substrate – in our case represented by a glass plate. Next, an organic plastic matrix, in which the individual color molecules are embedded, is added onto this layer. The matrix is then fitted with electrical contacts. If these are connected to a battery, a flow of electrical current to the color molecules is induced, stimulating them to continually fire single photons. This has been demonstrated by the physicists with photon correlation measurements.

Three crucial tricks used

Three tricks were crucial for the achievement. Number one: "We selected the right color molecules," says Maximilian Nothaft of the University of Stuttgart. The molecules have chemical structures in which three organic complexes are grouped around one central iridium atom.

Trick number two: The physicists provided for a proper distribution of the color molecules within the matrix. Too densely packed molecules would have interacted, no longer emitting single independent photons.

Trick number three: "The interface between the electrical contacts and the matrix has been well designed by us," explains Professor Jörg Wrachtrup of the University of Stuttgart. This is important for enabling the required electrons, the carriers of the electric charge, to be injected into the polymer matrix in the first place. In this case, the scientists were successful with a contact comprised of an aluminum / barium double layer.

Glimpse into the future

What are the physicists going to do next? "We shall try to deposit the matrix with the color molecules and the electrical contacts onto various materials so that we can use flexible substrates, such as plastic films," says Professor Pflaum. This can be done with a device that works like an ink jet printer, which is a standard technology that has been used in laboratories for years. The advantage of this is: The light sources can be even better positioned on a surface.

Studies funded by DFG

This success has been achieved under the umbrella of Research Group 730 ("Positioning of single nanostructures – Single quantum devices"), which is funded by the German Research Foundation (DFG). The spokesperson of the group is Professor Peter Michler of the University of Stuttgart.

"Electrically driven photon antibunching from a single molecule at room temperature", Maximilian Nothaft, Steffen Höhla, Fedor Jelezko, Norbert Frühauf, Jens Pflaum & Jörg Wrachtrup, Nature Communications 3 (628), 17 January 2012, doi:10.1038/ncomms1637

Contact

Prof. Dr. Jens Pflaum, Institute of Physics of the University of Würzburg, T +49 (0)931 31-83118, jpflaum@physik.uni-wuerzburg.de

Maximilian Nothaft and Prof. Dr. Jörg Wrachtrup, 3rd Institute of Physics of the University of Stuttgart, T +49 (0)711 685-65273, m.nothaft@physik.uni-stuttgart.de

Robert Emmerich | Julius-Maximilians-Universität W
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>