Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists create first metamaterial with rewritable magnetic ordering

23.05.2016

University of Notre Dame physicists and their collaborators have produced the first rewriteable artificial magnetic charge ice. The research, described in a paper published in Science today, shows strong potential for technological applications from information encoding, reprogrammable magnonics, and also to spintronics.

Notre Dame physicist Yong-Lei Wang and his colleagues have found a new way of designing artificial spin ices with controllable magnetic ordered states. The new magnetic metamaterial forms eight types of 'magnetic charge' ordering and enables the first rewritable artificial magnetic charge ice (MCI) which follows the "two-positive two-negative" charge ice rule. The study demonstrates techniques to switch the charge ordering both globally and locally. The 'read-write-erase' multiple recording functionalities are conveniently realized at room temperature.


These are magnetic force microscopy images of the patterned magnetic charge ice with 'ND' letters (initials of Notre Dame).

Credit: Yong-Lei Wang/Zhili Xiao

Artificial spin ice is a class of lithographically created arrays of interacting magnetic nano-islands. Due to its geometrical anisotropy, the elongated nano-scale island forms a single magnetic domain which behaves like 'macro spin' with a binary degree of freedom. The 'spins' in artificial spin ice follows the 'two-in two-out' ice rule that determines the proton positional ordering in water ice.

Scientists have created artificial spin ice systems as models to investigate complex magnetism in crystals and the related physics in a material that can be tailored with specialized properties and be investigated through direct imaging.

Due to the plethora of spin configurations, artificial spin ices have great potential for applications in data storage, memory, and logic devices. However, because of the large magnetic energy scales of these nanoscale islands at room temperature, achieving the magnetic ground and higher ordered states in traditional artificial spin ices have been a big challenge for nearly a decade since the first artificial spin ice was created. This essentially limits the practical application of artificial ices.

"We solved the challenge with a new way of thinking. Instead of focusing on spins, we tackled the associated magnetic charges that allow us to design and create artificial magnetic charge ices with more control," said Wang, who designed the new magnetic nano-structures and built a custom magnetic force microscope (MFM) for the research. He is the first author and co-corresponding author on the study.

The stray magnetic field distribution of each elongated magnetic island can be represented as a dumbbell of magnetic charges, one positive and one negative. Wang and his colleagues demonstrated a very simple way to redesign the spin texture of artificial spin ice while maintaining its magnetic charge map. The decoupling of magnetic spins and magnetic charges enables them to create desired and new magnetic charge ordered states by tuning the magnetic textures through an applied external magnetic field.

"Our realization of tunable artificial magnetic charge ices is similar to the creation of a 'smart' material. It provides a versatile platform to advance our knowledge about artificial spin ices, to discover new physical phenomena and to achieve desired functionalities for applications," said Zhili Xiao, who is the co-corresponding author on the study and holds a joint appointment between Argonne National Laboratory and Northern Illinois University.

The researchers also show how to use a magnetic tip of an MFM as a local perturbation of the applied field to flip 'single spin' and to manipulate local charge ordering. They demonstrated the 'read-write-erase' recording functionality of the magnetic charge ice at room temperature. They created micrometer scale magnetic charge letters 'ND' (the initial letters of Notre Dame) which is an excited magnetic state surrounded by a ground state background. This could lead to a new magnetic micro patterning technique by transferring these magnetic patterns to other materials through magnetolithography.

"By combining these magnetic nano-patterned structures with other materials such as superconductors, our rewritable magnetic charge ice provides an ideal and versatile playground to explore and control new emergent properties that can arise from novel hybrid structures," said Wai-Kwong Kwok, who is the group leader of Argonne's superconducting and magnetism group and is a co-author of this study.

Yong-Lei Wang | EurekAlert!

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>