Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Couple Distant Nuclear Spins Using a Single Electron

12.07.2016

For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron. Three research groups from the Department of Physics took part in this complex experiment, the results of which have now been published in the journal Nature Nanotechnology.

In most materials, the nuclear spins of neighboring atoms have only a very weak effect on one another, as the tiny nuclei are located deep within the atoms. This is not the case in metals, however, where some of the electrons are able to move freely. The electron spins are able to couple nuclear spins at relatively large distances from one another. Named after four physicists, this RKKY interaction was discovered in the 1950s.


Art view of a semiconductor InAs/GaAs quantum dot (In, Ga and As respectively in yellow, blue and purple). Two remote nuclear spins (yellow arrows) are coupled via the spin of an electron delocalized over the quantum dot (red). (Image: University of Basel, Department of Physics)

Nuclear spins linked by an individual electron spin

Now, an experiment by researchers from the Department of Physics at the University of Basel has for the first time succeeded in demonstrating this mechanism with a single electron, describing it using quantum theory. The team led by Prof. Richard Warburton trapped a single electron inside a quantum dot.

With use of a method developed in Basel to measure nuclear spin resonance, they showed that the electron coupled the spins of nuclei up to five nanometers apart – a huge distance in the world of nuclear spins. The results are particularly relevant to the development of spin qubits: these seek to use electron spins to carry information, but the interaction with the nuclei limits the stability of the quantum information.

Concentrated blast of physics

“This is probably the most complicated experiment our team has ever carried out,” says Prof. Richard Warburton, leader of the nano-photonics research group at the Department of Physics in Basel. At the same time, he expressed his delight at the cooperation between the three research groups that made this experiment possible. “There were so many different aspects to take into account – a challenge we were able to master only thanks to the fantastic collaborations in our department.”

The research group led by Prof. Martino Poggio provided the expertise in the field of nuclear spin resonance, while the team led by Prof. Daniel Loss spent months computing the quantum theory for the experiment. A vital contribution also came from Ruhr University Bochum, which manufactured the semiconductor chips for the experiment.

The project received funding from the National Center of Competence in Research Quantum Science and Technology (NCCR QSIT), the Swiss National Science Foundation and the Swiss Nanoscience Institute.

Original article

Gunter Wüst, Mathieu Munsch, Franziska Maier, Andreas V. Kuhlmann, Arne Ludwig, Andreas D. Wieck, Daniel Loss, Martino Poggio and Richard J. Warburton
Role of the electron spin in the nuclear spin coherence in a quantum dot
Nature Nanotechnology (2016), doi: 10.1038/nnano.2016.114

Further information

Prof. Dr. Richard J. Warburton, University of Basel, Department of Physics, tel. +41 61 267 35 60, email: richard.warburton@unibas.ch

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

nachricht Ultra ultrasound to transform new tech
17.01.2019 | Swansea University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A new twist on a mesmerizing story

17.01.2019 | Physics and Astronomy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics

17.01.2019 | Materials Sciences

Drones shown to make traffic crash site assessments safer, faster and more accurate

17.01.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>