Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Take an Atomic-Level Peek at Unexpected Behavior in Multilayered Structures

04.11.2013
Researcher finds 'knife' to cut into nanomaterial 'sandwich'

A new class of materials developed at the University of Arkansas may influence the next generation of nano-devices, in which integrated circuits are composed of many layers of dissimilar materials, such as ferromagnetic and superconducting oxides.


University of Arkansas

Cross-sectional image of the multilayer structure on nanoscale

The researchers used innovative cross-sectional scanning tunneling microscopy and spectroscopy at the U.S. Department of Energy’s Argonne Center for Nanoscale Materials to develop the first direct view of the physical and chemical behavior of electrons and atoms at boundary regions within the dissimilar materials.

“The fundamental issue here is that conventional modern day electronics based on silicon is very problematic to operate on a nanometer scale,” said Jak Chakhalian, professor of physics in the J. William Fulbright College of Arts and Sciences at the University of Arkansas. “Integrated circuits have many, many layers of functional material. As layers get thinner, the materials start behaving strangely and often unreliably. Now the question of the size of the interface, where two materials ‘talk’ to each other or influence each other, becomes critical.”

An article detailing the finding, “Visualizing short-range charter transfer at the interfaces between ferromagnetic and superconducting oxides” was published Aug. 13 in the online journal Nature Communications.

Te Yu Chien, a former postdoctoral research associate at the university, developed a technique at the Advanced Photon Source at Argonne to help Chakhalian’s research group with an easy way of looking directly at the interfaces between two dissimilar oxides.

“That was the breakthrough,” Chakhalian said. “He found the ‘knife’ that would cut through the multilayered ‘sandwich.’ Previously, it was extremely difficult, if not impossible, to look inside the layered complex oxide nanomaterial that we had developed here in our lab because they fractured when they were cut.

Chien’s technique provided the researchers with crucial information: Not only do the atomic layers talk to each other, but they also deeply influence each other on a one- to two-nanometer scale.

“We learned that in our materials, the layers strongly influence each other,” Chakhalian said. “For the first time, we showed how electrons and ions interact on the atomic scale in those complex multilayered structures, and it was not what a lot of people expected. This is fantastic. So now we can have beautiful control of these materials on the atomic scale obtained right at the interface, which defines the properties of those materials.”

Chakhalian holds the Charles E. and Clydene Scharlau Endowed Professorship and directs the Laboratory for Artificial Quantum Materials at the University of Arkansas.

The results were obtained by a collaborative effort with John W. Freeland of the Advanced Photon Source and Nathan P. Guisinger of the Center for Nanoscale Materials, both at Argonne National Lab outside Chicago; and Lena F. Kourkoutis and David A. Muller at the Kavli Institute at Cornell for Nanoscale Science in Ithaca, N.Y.

CONTACT:
Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakhal@uark.edu

Chris Branam | Newswise
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht Kiel physicists discover new effect in the interaction of plasmas with solids
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Understanding insulators with conducting edges
16.01.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

The pace at which the world’s permafrost soils are warming

16.01.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>