Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists at FAU generate attosecond electron pulses with laser light

16.05.2018

Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have successfully generated controlled electron pulses in the attosecond range. They used optical travelling waves that are formed by laser pulses of varying wavelengths. The movements of electrons in atoms were revealed using attosecond free-electron pulses. The findings of the researchers from Erlangen have been published in the acclaimed journal ‘Physical Review Letters’ (DOI: 10.1103/PhysRevLett.120.103203).

Scientists have been researching ways of generating packets of electrons in extremely short timescales for several years. Such pulses enable ultrafast movements to be tracked, for example vibrations in atomic lattices, phase transitions in materials or molecular bonds in chemical reactions.


‘The shorter the pulse, the faster the movements that can be mapped,’ explains Prof. Dr. Peter Hommelhoff, Chair of Laser Physics at FAU.

‘However, this also involves the special challenge of how to control the packets of electrons.’ Last year, Hommelhoff and his team successfully generated periodic electron pulses with a duration of 1.3 femtoseconds – a femtosecond is one quadrillionth of a second. To do so, they directed a continuous beam of electrons over a silicon lattice and superimposed it with the optical field of laser pulses.

From femtosecond to attosecond pulses

The researchers at FAU have now gone one better and have generated electron pulses of 0.3 femtoseconds or 300 attoseconds. Lasers were also used for this method. Firstly, packets of electrons are emitted from an electron source using ultraviolet laser pulses.

These packets then interact with optical travelling waves that are formed in a vacuum by two infrared laser pulses of varying wavelengths.

‘The ponderomotive interaction causes a shift in the electron density,’ explains Norbert Schönenberger, a researcher at Prof. Hommelhoff’s Chair and co-author of the study. ‘We break down the electron packet to a certain extent into even smaller packets to generate electron pulses in the attosecond range. The time delay in the arrival of the laser beams enables us to generate specific travelling waves and thus precisely control the trains of pulses.’

This method developed by the physicists at FAU could revolutionise experiments in electron diffraction and microscopy. In future, attosecond pulses will not only be able to be used to trace the movements of atoms, but also even to show the dynamics of electrons within atoms, molecules and solid bodies.

The results have been published under the title ‘Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains’ in the renowned journal ‘Physical Review Letters’.

Further information:
Prof. Dr. Peter Hommelhoff
Chair of Laser Physics
Phone: +49 / 913185-27090
peter.hommelhoff@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>