Physicists analyze the rotational dynamics of galaxies and the influence of the mass of the photon

The spiral structure of our galaxy, the Milky Way, in an artistic impression photo/©: NASA/JPL-Caltech

The rotation of stars in galaxies such as our Milky Way is puzzling. The orbital speeds of stars should decrease with their distance from the center of the galaxy, but in fact stars in the middle and outer regions of galaxies have the same rotational speed. This may be due to the gravitational effect of matter that we can't see.

But although researchers have been seeking it for decades, the existence of such 'dark matter' has yet to be definitively proven and we still don't know what it might be made of. With this in mind, the physicists Dmitri Ryutov, Dmitry Budker, and Victor Flambaum have suggested that the rotational dynamics of galaxies might be explained by other factors. They hypothesize that the mass of photons, which are particles of light, might be responsible.

Professor Dmitri Ryutov, who recently retired from the Lawrence Livermore National Laboratory in California, USA, is an expert in plasma physics. He was awarded the American Physical Society's (APS) 2017 Maxwell Prize for Plasma Physics for his achievements in the field. Physicists generally credit Ryutov with establishing the upper limit for the mass of the photon.

As this mass, even if it is nonzero, is extremely small, it is usually ignored when analyzing atomic and nuclear processes. But even a vanishingly tiny mass of the photon could, according to the scientists' collaborative proposal, have an effect on large-scale astrophysical phenomena.

While visiting Johannes Gutenberg University Mainz (JGU), Ryutov, his host Professor Dmitry Budker of the Helmholtz Institute Mainz (HIM), and Professor Victor Flambaum, Fellow of the Gutenberg Research College of Johannes Gutenberg University Mainz (JGU), decided to take a closer look at the idea.

They were interested in how the infinitesimally small mass of the photon could have an effect on massive galaxies. The mechanism at the core of the physicists' assumption is a consequence of what is known as Maxwell-Proca equations. These would allow additional centripetal forces to be generated as a result of the electromagnetic stresses in a galaxy.

Are the effects as strong as those exerted by dark matter?

“The hypothetical effect we are investigating is not the result of increased gravity,” explained Dmitry Budker. This effect may occur concurrently with the assumed influence of dark matter. It may even – under certain circumstances – completely eliminate the need to evoke dark matter as a factor when it comes to explaining rotation curves. Rotation curves express the relationship between the orbital speeds of stars in a galaxy and their radial distance from the galaxy's center.

“By assuming a certain photon mass, much smaller than the current upper limit, we can show that this mass would be sufficient to generate additional forces in a galaxy and that these forces would be roughly large enough to explain the rotation curves,” said Budker. “This conclusion is extremely exciting.”

The physicists even ventured a step further. They looked into how protostars form and discovered that their hypothesis has other implications. It predicts that long-lived, relatively lightweight stars, such as our sun, would have highly elliptical orbits. “Actual observations clearly don't agree with this prediction, meaning our theory can't explain everything.”

Proca-force effects can thus only be responsible for some of the anomalies in the rotation curves. “We don’t currently consider photon mass to be the solution to the rotation-curve problem. But it could be part of the solution,” concluded Budker. “However, we need to keep an open mind as long as we do not actually know what dark matter is.”

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_galaxie_rotationskurven_…
Visiting the Mainz University Gutenberg Campus: (fltr) Professor Dr. Margarita Ryutova, Professor Dr. Motohiko Yoshimura, host Professor Dr. Dmitry Budker, and Professor Dr. Dmitri Ryutov
photo/©: Dmitry Budker

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_galaxie_rotationskurven_…
The spiral structure of our galaxy, the Milky Way, in an artistic impression
photo/©: NASA/JPL-Caltech

Related links:
* https://budker.uni-mainz.de/ – Budker Lab at the Helmholtz Institute Mainz and JGU
* https://www.hi-mainz.de/ – Helmholtz Institute Mainz (HIM)
* https://pls.llnl.gov/people/staff-bios/physics/ryutov-d – Dmitri Ryutov at the Lawrence Livermore National Laboratory
* https://www.aps.org/newsroom/pressreleases/maxwell17.cfm – APS press release “Dmitri Ryutov Wins 2017 Maxwell Prize for Plasma Physics” (14 July 2017)

Read more:
* http://www.uni-mainz.de/presse/aktuell/6963_ENG_HTML.php – press release “Atomic parity violation research reaches new milestone” (13 Nov. 2018)
* http://www.uni-mainz.de/presse/aktuell/6769_ENG_HTML.php – press release “Earth's magnetic field measured using artificial stars at 90 kilometers altitude” (14 Nov. 2018)
* http://www.uni-mainz.de/presse/20266_ENG_HTML.php – press release “ERC Advanced Grant for experimental physicist Dmitry Budker” (12 May 2016)
* http://www.magazin.uni-mainz.de/2452_ENG_HTML.php – JGU MAGAZINE: “Not everything in the universe is symmetrical” (9 Jan. 2015)

Professor Dr. Dmitry Budker
Helmholtz Institute Mainz and
Quantum, Atomic, and Neutron Physics Group (QUANTUM)
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-27414
e-mail: budker@uni-mainz.de
http://www.phmi.uni-mainz.de/ENG/8055.php

D. D. Ryutov, D. Budker, V. V. Flambaum, A Hypothetical Effect of the Maxwell–Proca Electromagnetic Stresses on Galaxy Rotation Curves, The Astrophysical Journal 871:2, 1 Februar 2019,
DOI:10.3847/1538-4357/aaf63a
https://iopscience.iop.org/article/10.3847/1538-4357/aaf63a/meta

Media Contact

Petra Giegerich idw - Informationsdienst Wissenschaft

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Rocks with the oldest evidence yet of Earth’s magnetic field

The 3.7 billion-year-old rocks may extend the magnetic field’s age by 200 million years. Geologists at MIT and Oxford University have uncovered ancient rocks in Greenland that bear the oldest…

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Partners & Sponsors