Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists analyze the rotational dynamics of galaxies and the influence of the mass of the photon

05.03.2019

Could the effect of photon mass on the gaseous components in galaxies be as strong as that of dark matter?

The rotation of stars in galaxies such as our Milky Way is puzzling. The orbital speeds of stars should decrease with their distance from the center of the galaxy, but in fact stars in the middle and outer regions of galaxies have the same rotational speed. This may be due to the gravitational effect of matter that we can't see.


The spiral structure of our galaxy, the Milky Way, in an artistic impression

photo/©: NASA/JPL-Caltech


Visiting the Mainz University Gutenberg Campus: (fltr) Professor Dr. Margarita Ryutova, Professor Dr. Motohiko Yoshimura, host Professor Dr. Dmitry Budker, and Professor Dr. Dmitri Ryutov

photo/©: Dmitry Budker

But although researchers have been seeking it for decades, the existence of such 'dark matter' has yet to be definitively proven and we still don't know what it might be made of. With this in mind, the physicists Dmitri Ryutov, Dmitry Budker, and Victor Flambaum have suggested that the rotational dynamics of galaxies might be explained by other factors. They hypothesize that the mass of photons, which are particles of light, might be responsible.

Professor Dmitri Ryutov, who recently retired from the Lawrence Livermore National Laboratory in California, USA, is an expert in plasma physics. He was awarded the American Physical Society's (APS) 2017 Maxwell Prize for Plasma Physics for his achievements in the field. Physicists generally credit Ryutov with establishing the upper limit for the mass of the photon.

As this mass, even if it is nonzero, is extremely small, it is usually ignored when analyzing atomic and nuclear processes. But even a vanishingly tiny mass of the photon could, according to the scientists' collaborative proposal, have an effect on large-scale astrophysical phenomena.

While visiting Johannes Gutenberg University Mainz (JGU), Ryutov, his host Professor Dmitry Budker of the Helmholtz Institute Mainz (HIM), and Professor Victor Flambaum, Fellow of the Gutenberg Research College of Johannes Gutenberg University Mainz (JGU), decided to take a closer look at the idea.

They were interested in how the infinitesimally small mass of the photon could have an effect on massive galaxies. The mechanism at the core of the physicists' assumption is a consequence of what is known as Maxwell-Proca equations. These would allow additional centripetal forces to be generated as a result of the electromagnetic stresses in a galaxy.

Are the effects as strong as those exerted by dark matter?

"The hypothetical effect we are investigating is not the result of increased gravity," explained Dmitry Budker. This effect may occur concurrently with the assumed influence of dark matter. It may even – under certain circumstances – completely eliminate the need to evoke dark matter as a factor when it comes to explaining rotation curves. Rotation curves express the relationship between the orbital speeds of stars in a galaxy and their radial distance from the galaxy's center.

"By assuming a certain photon mass, much smaller than the current upper limit, we can show that this mass would be sufficient to generate additional forces in a galaxy and that these forces would be roughly large enough to explain the rotation curves," said Budker. "This conclusion is extremely exciting."

The physicists even ventured a step further. They looked into how protostars form and discovered that their hypothesis has other implications. It predicts that long-lived, relatively lightweight stars, such as our sun, would have highly elliptical orbits. "Actual observations clearly don't agree with this prediction, meaning our theory can't explain everything."

Proca-force effects can thus only be responsible for some of the anomalies in the rotation curves. "We don’t currently consider photon mass to be the solution to the rotation-curve problem. But it could be part of the solution," concluded Budker. "However, we need to keep an open mind as long as we do not actually know what dark matter is."

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_galaxie_rotationskurven_...
Visiting the Mainz University Gutenberg Campus: (fltr) Professor Dr. Margarita Ryutova, Professor Dr. Motohiko Yoshimura, host Professor Dr. Dmitry Budker, and Professor Dr. Dmitri Ryutov
photo/©: Dmitry Budker

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_galaxie_rotationskurven_...
The spiral structure of our galaxy, the Milky Way, in an artistic impression
photo/©: NASA/JPL-Caltech

Related links:
* https://budker.uni-mainz.de/ – Budker Lab at the Helmholtz Institute Mainz and JGU
* https://www.hi-mainz.de/ – Helmholtz Institute Mainz (HIM)
* https://pls.llnl.gov/people/staff-bios/physics/ryutov-d – Dmitri Ryutov at the Lawrence Livermore National Laboratory
* https://www.aps.org/newsroom/pressreleases/maxwell17.cfm – APS press release "Dmitri Ryutov Wins 2017 Maxwell Prize for Plasma Physics" (14 July 2017)

Read more:
* http://www.uni-mainz.de/presse/aktuell/6963_ENG_HTML.php – press release "Atomic parity violation research reaches new milestone" (13 Nov. 2018)
* http://www.uni-mainz.de/presse/aktuell/6769_ENG_HTML.php – press release "Earth's magnetic field measured using artificial stars at 90 kilometers altitude" (14 Nov. 2018)
* http://www.uni-mainz.de/presse/20266_ENG_HTML.php – press release "ERC Advanced Grant for experimental physicist Dmitry Budker" (12 May 2016)
* http://www.magazin.uni-mainz.de/2452_ENG_HTML.php – JGU MAGAZINE: "Not everything in the universe is symmetrical" (9 Jan. 2015)

Wissenschaftliche Ansprechpartner:

Professor Dr. Dmitry Budker
Helmholtz Institute Mainz and
Quantum, Atomic, and Neutron Physics Group (QUANTUM)
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-27414
e-mail: budker@uni-mainz.de
http://www.phmi.uni-mainz.de/ENG/8055.php

Originalpublikation:

D. D. Ryutov, D. Budker, V. V. Flambaum, A Hypothetical Effect of the Maxwell–Proca Electromagnetic Stresses on Galaxy Rotation Curves, The Astrophysical Journal 871:2, 1 Februar 2019,
DOI:10.3847/1538-4357/aaf63a
https://iopscience.iop.org/article/10.3847/1538-4357/aaf63a/meta

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>