Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists analyze the rotational dynamics of galaxies and the influence of the mass of the photon

05.03.2019

Could the effect of photon mass on the gaseous components in galaxies be as strong as that of dark matter?

The rotation of stars in galaxies such as our Milky Way is puzzling. The orbital speeds of stars should decrease with their distance from the center of the galaxy, but in fact stars in the middle and outer regions of galaxies have the same rotational speed. This may be due to the gravitational effect of matter that we can't see.


The spiral structure of our galaxy, the Milky Way, in an artistic impression

photo/©: NASA/JPL-Caltech


Visiting the Mainz University Gutenberg Campus: (fltr) Professor Dr. Margarita Ryutova, Professor Dr. Motohiko Yoshimura, host Professor Dr. Dmitry Budker, and Professor Dr. Dmitri Ryutov

photo/©: Dmitry Budker

But although researchers have been seeking it for decades, the existence of such 'dark matter' has yet to be definitively proven and we still don't know what it might be made of. With this in mind, the physicists Dmitri Ryutov, Dmitry Budker, and Victor Flambaum have suggested that the rotational dynamics of galaxies might be explained by other factors. They hypothesize that the mass of photons, which are particles of light, might be responsible.

Professor Dmitri Ryutov, who recently retired from the Lawrence Livermore National Laboratory in California, USA, is an expert in plasma physics. He was awarded the American Physical Society's (APS) 2017 Maxwell Prize for Plasma Physics for his achievements in the field. Physicists generally credit Ryutov with establishing the upper limit for the mass of the photon.

As this mass, even if it is nonzero, is extremely small, it is usually ignored when analyzing atomic and nuclear processes. But even a vanishingly tiny mass of the photon could, according to the scientists' collaborative proposal, have an effect on large-scale astrophysical phenomena.

While visiting Johannes Gutenberg University Mainz (JGU), Ryutov, his host Professor Dmitry Budker of the Helmholtz Institute Mainz (HIM), and Professor Victor Flambaum, Fellow of the Gutenberg Research College of Johannes Gutenberg University Mainz (JGU), decided to take a closer look at the idea.

They were interested in how the infinitesimally small mass of the photon could have an effect on massive galaxies. The mechanism at the core of the physicists' assumption is a consequence of what is known as Maxwell-Proca equations. These would allow additional centripetal forces to be generated as a result of the electromagnetic stresses in a galaxy.

Are the effects as strong as those exerted by dark matter?

"The hypothetical effect we are investigating is not the result of increased gravity," explained Dmitry Budker. This effect may occur concurrently with the assumed influence of dark matter. It may even – under certain circumstances – completely eliminate the need to evoke dark matter as a factor when it comes to explaining rotation curves. Rotation curves express the relationship between the orbital speeds of stars in a galaxy and their radial distance from the galaxy's center.

"By assuming a certain photon mass, much smaller than the current upper limit, we can show that this mass would be sufficient to generate additional forces in a galaxy and that these forces would be roughly large enough to explain the rotation curves," said Budker. "This conclusion is extremely exciting."

The physicists even ventured a step further. They looked into how protostars form and discovered that their hypothesis has other implications. It predicts that long-lived, relatively lightweight stars, such as our sun, would have highly elliptical orbits. "Actual observations clearly don't agree with this prediction, meaning our theory can't explain everything."

Proca-force effects can thus only be responsible for some of the anomalies in the rotation curves. "We don’t currently consider photon mass to be the solution to the rotation-curve problem. But it could be part of the solution," concluded Budker. "However, we need to keep an open mind as long as we do not actually know what dark matter is."

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_galaxie_rotationskurven_...
Visiting the Mainz University Gutenberg Campus: (fltr) Professor Dr. Margarita Ryutova, Professor Dr. Motohiko Yoshimura, host Professor Dr. Dmitry Budker, and Professor Dr. Dmitri Ryutov
photo/©: Dmitry Budker

http://www.uni-mainz.de/bilder_presse/08_physik_quantum_galaxie_rotationskurven_...
The spiral structure of our galaxy, the Milky Way, in an artistic impression
photo/©: NASA/JPL-Caltech

Related links:
* https://budker.uni-mainz.de/ – Budker Lab at the Helmholtz Institute Mainz and JGU
* https://www.hi-mainz.de/ – Helmholtz Institute Mainz (HIM)
* https://pls.llnl.gov/people/staff-bios/physics/ryutov-d – Dmitri Ryutov at the Lawrence Livermore National Laboratory
* https://www.aps.org/newsroom/pressreleases/maxwell17.cfm – APS press release "Dmitri Ryutov Wins 2017 Maxwell Prize for Plasma Physics" (14 July 2017)

Read more:
* http://www.uni-mainz.de/presse/aktuell/6963_ENG_HTML.php – press release "Atomic parity violation research reaches new milestone" (13 Nov. 2018)
* http://www.uni-mainz.de/presse/aktuell/6769_ENG_HTML.php – press release "Earth's magnetic field measured using artificial stars at 90 kilometers altitude" (14 Nov. 2018)
* http://www.uni-mainz.de/presse/20266_ENG_HTML.php – press release "ERC Advanced Grant for experimental physicist Dmitry Budker" (12 May 2016)
* http://www.magazin.uni-mainz.de/2452_ENG_HTML.php – JGU MAGAZINE: "Not everything in the universe is symmetrical" (9 Jan. 2015)

Wissenschaftliche Ansprechpartner:

Professor Dr. Dmitry Budker
Helmholtz Institute Mainz and
Quantum, Atomic, and Neutron Physics Group (QUANTUM)
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-27414
e-mail: budker@uni-mainz.de
http://www.phmi.uni-mainz.de/ENG/8055.php

Originalpublikation:

D. D. Ryutov, D. Budker, V. V. Flambaum, A Hypothetical Effect of the Maxwell–Proca Electromagnetic Stresses on Galaxy Rotation Curves, The Astrophysical Journal 871:2, 1 Februar 2019,
DOI:10.3847/1538-4357/aaf63a
https://iopscience.iop.org/article/10.3847/1538-4357/aaf63a/meta

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>