Physical environment influences stem cell development

A researcher at the Hebrew University of Jerusalem, together with Israeli and foreign collaborators, has revealed how physical qualities — and not only chemical ones – may have an influence in determining how adult stem cells from the bone marrow develop into differentiated ones. This represents an important step in understanding the mechanisms that direct and regulate the specialization of stem cells from their undefined state.

Scientists around the world are involved in studying, describing and even manipulating the development of stem cells on their path into becoming specialized cells, such as heart, muscle, brain or any other tissue. This research has tremendous implications for the future utilization of stem cells as a new tool of medical treatment.

In an article published in Nature Physics, Dr. Assaf Zemel of the Institute of Dental Sciences at the Hebrew University and his fellow researchers, Prof. Samuel Safran from the Weizmann Institute of Science, Dr. Florian Rehfeldt from Gottingen University in Germany, and Dr. Andre Brown and Prof. Dennis Discher from the University of Pennsylvania, tell how they have developed a theoretical model and carried out experiments on stem cells to propose a mechanism for the recently discovered sensitivity of stem cell differentiation to the rigidity of their surroundings.

They described the physical changes that take place in stem cells that are layered on supporting foundations of differing rigidities. They showed that on a supporting matrix whose rigidity mimics that of muscle tissue, the cells become elongated and filled with aligned muscle-like fibers. The authors explain how this situation is fundamentally different from the case where the supporting substance is made either softer (to mimic brain tissue) or harder (to mimic bone tissue), in which case the cells adopt more symmetric structures and differentiate into brain and bone cells, respectively.

These findings shed new light on our understanding of the mechanisms that govern the differentiation of stem cells and may have important implications for the design of artificial tissues and the development of novel therapeutic strategies, says Dr. Zemel.

Media Contact

Jerry Barach EurekAlert!

More Information:

http://www.huji.ac.il

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors