Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Deconstructed nanosensors light the way forward

14.02.2013
A flexible design approach for nanosensors that overcomes practicality and reliability issues is now available
Metal nanostructures can act as tiny antennae to control light since they can focus and guide light on the smallest of scales. The optical properties of these antennae depend strongly on their size and shape, making it difficult to predict which shape to choose for a desired optical effect without relying on complex theoretical calculations. Mohsen Rahmani and co-workers at the A*STAR Data Storage Institute, Singapore, and Imperial College London, UK, have now developed a method that allows for the practical and reliable design of these nano-antennae (1)

Their method is based on new understanding of the optical resonance properties of a few standardized building blocks of the antennae that arise from plasmons — the collective movements of electrons at their surface. “Our novel understanding captures aspects of device design that extend well beyond known optical interference mechanisms and significantly advances our understanding of the plasmonic resonance spectrum. This could bring about new applications,” explains Rahmani.

Some of the most useful properties of plasmonic antennae arise when the metal nanostructures are brought within close proximity to each other. This leads to interference effects near their surface that cause sharp spectral features, known as Fano resonances. Any changes near the nanostructures, such as the introduction of a few molecules or fluctuations in temperature, can impact the sensitive Fano resonances. These changes can be detected and used for sensing applications.

Typically, researchers iteratively use computer models of nanostructures to optimize the design of plasmonic antennae. Rahmani and co-workers simplified the approach by using standardized subunits of nanoparticles called plasmonic oligomers. For example, they deconstructed a cross-shaped structure, consisting of five dots, into two different subunits — one with three dots in a line and one with four outer dots. They then determined the plasmonic resonance of an entire array simply by combining those subunits.

By modeling the properties of the oligomers and comparing their results with measurements of optical spectra, Rahmani observed a systematic dependence of the optical resonances on individual subunits. The team’s findings suggest that the optical properties of various plasmonic antennae can be designed easily from just a few basic building blocks.

"The possible combinations are almost endless and these structures could find many applications," says Rahmani. These range from nanoscale lasers and optical switches for telecommunications to biosensing. “We are now going to develop these oligomers as nanosensing platforms for detecting the adsorption of chemical molecules and protein monolayers.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Rahmani, M., Lei, D. Y., Giannini, V., Lukiyanchuk, B., Ranjbar, M. et al. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. Nano Letters 12, 2101–2106 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6626
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>