Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Beam me up

24.05.2012
‘Tractor beams’ of light that pull objects towards them are no longer science fiction. Haifeng Wang at the A*STAR Data Storage Institute and co-workers have now demonstrated how a tractor beam can in fact be realized on a small scale.

Tractor beams are a well-known concept in science fiction. These rays of light are often shown pulling objects towards an observer, seemingly violating the laws of physics, and of course, such beams have yet to be realised in the real world.

Haifeng Wang at the A*STAR Data Storage Institute and co-workers have now demonstrated how a tractor beam can in fact be realized on a small scale. “Our work demonstrates a tractor beam based only on a single laser to pull or push an object of interest toward the light source,” says Wang.

Based on pioneering work by Albert Einstein and Max Planck more than a hundred years ago, it is known that light carries momentum that pushes objects away. In addition, the intensity that varies across a laser beam can be used to push objects sideways, and for example can be used to move cells in biotechnology applications. Pulling an object towards an observer, however, has so far proven to be elusive. In 2011, researchers theoretically demonstrated a mechanism where light movement can be controlled using two opposing light beams — though technically, this differs from the idea behind a tractor beam.

Wang and co-workers have now studied the properties of lasers with a particular type of distribution of light intensity across the beam, or so-called Bessel beams. Usually, if a laser beam hits a small particle in its path, the light is scattered backwards, which in turn pushes the particle forward. What Wang and co-workers have now shown theoretically for Bessel beams is that for particles that are sufficiently small, the light scatters off the particle in a forward direction, meaning that the particle itself is pulled backwards towards the observer. In other words, the behaviour of the particle is the direct opposite of the usual scenario. The size of the tractor beam force depends on parameters such as the electrical and magnetic properties of the particles.

Although the forces are not very large, such tractor beams do have real applications, says Wang. “These beams are not very likely to pull a human or a car, as this would require a huge laser intensity that may damage the object,” says Wang. “However, they could manipulate biological cells because the force needed for these doesn’t have to be large.”

Such applications are the driving force for future experimental demonstrations of such pulling effects. The technology could, for example, be used to gauge the tensile strength of cells, which would be useful to investigate whether cells have been infected. “For instance, the malaria-infected blood cell is more rigid, and this technology would be an easy-to-use tool to measure this,” adds Wang.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

References:

Novitsky, A., Qiu, C.-W. & Wang, H. Single gradientless light beam drags particles as tractor beams. Physics Review Letters 107, 203601 (2011). (link to article below)

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>