Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photoexcited graphene puzzle solved

01.06.2018

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for light detectors can offer significant improvements with respect to materials being used nowadays.


Schematic representation of the ultrafast optical pump – terahertz probe experiment, where the optical pump induces electron heating and the terahertz pulse is sensitive to the conductivity of graphene directly after this heating process

Ill./©: Fabien Vialla

For example, graphene can detect light of almost any color, and it gives an extremely fast electronic response within one millionth of a millionth of a second. Thus, in order to properly design graphene-based light detectors it is crucial to understand the processes that take place inside the graphene after it absorbs light.

The Mainz-based researchers Dr. Hai Wang, Professor Dmitry Turchinovich, Professor Mathias Kläui, and Professor Mischa Bonn, in collaboration with scientists from various European labs, have now succeeded in understanding these processes. The project was led by Dr. Klaas-Jan Tielrooij from ICFO in Spain, who was recently elected visiting professor at the Materials Science in Mainz (MAINZ) Graduate School of Excellence.

Published recently in Science Advances, their work gives a thorough explanation of why the graphene conductivity in some cases increases after light absorption while it decreases in others. The researchers were able to show that this behavior correlates with the way in which the energy from the absorbed light flows to the graphene electrons: After light is absorbed by the graphene, the processes through which graphene electrons heat up happen extremely fast and with a very high efficiency.

For highly doped graphene with many free electrons present, ultrafast electron heating leads to carriers with elevated energy, so-called hot carriers. This, in turn, leads to a decrease in conductivity.

Interestingly enough, for weakly doped graphene with less free electrons, electron heating leads to the creation of additional free electrons and, thus, an increase in conductivity. These additional carriers are the direct result of the gapless nature of graphene. In gapped materials, electron heating does not lead to additional free carriers.

This simple scenario of light-induced electron heating in graphene can explain many observed effects. Aside from describing the conductive properties of the material after light absorption, it can explain carrier multiplication, where under specific conditions one absorbed light particle, i.e., a photon, can indirectly generate more than one additional free electron and thus create an efficient photo response within a device.

The results of the paper and, in particular, understanding electron heating processes accurately, will definitely mean a great boost in the design and development of graphene-based light detection technology.

This research work was funded by the German Research Foundation and by the European Commission under Graphene Flagship as well as by a Mineco Young Investigator grant.

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_komet_graphen_lichtsensor.jpg
Schematic representation of the ultrafast optical pump – terahertz probe experiment, where the optical pump induces electron heating and the terahertz pulse is sensitive to the conductivity of graphene directly after this heating process
Ill./©: Fabien Vialla

Publication:
Andrea Tomadin et al.
The ultrafast dynamics and conductivity of photoexcited graphene at different Fermi energies
Science Advances, 11 May 2018
DOI: 10.1126/sciadv.aar5313
http://advances.sciencemag.org/content/4/5/eaar5313.full

Contact:
Dr. Hai I. Wang
Max Planck Institute for Polymer Research
55128 Mainz, GERMANY
phone +49 6131 379-522
e-mail: wanghai@mpip-mainz.mpg.de
http://www.mpip-mainz.mpg.de/5111004/dr-hai-wang

Professor Dr. Mathias Kläui
Condensed Matter Physics
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23633
e-mail: klaeui@uni-mainz.de
https://www.klaeui-lab.physik.uni-mainz.de/homepage-prof-dr-mathias-klaeui/

Related links:
https://www.klaeui-lab.physik.uni-mainz.de/ – Kläui Lab at the JGU Institute of Physics
https://www.klaeui-lab.physik.uni-mainz.de/magnetic-and-electronic-properties-of... – Research project on Magnetic and electronic properties of carbon allotropes at the JGU Institute of Physics
https://www.blogs.uni-mainz.de/fb08-iph-eng/ – JGU Institute of Physics
http://www.mpip-mainz.mpg.de/home/en – Max Planck Institute for Polymer Research
http://www.mainz.uni-mainz.de/ – Graduate School of Excellence Materials Science in Mainz (MAINZ)

Read more:
http://www.uni-mainz.de/presse/aktuell/4356_ENG_HTML.php – press release " Construction set of magnon logic extended: Magnon spin currents can be controlled via spin valve structure" (14 March 2018)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Colloidal Quantum Dot Photodetectors can now see further than before
21.01.2020 | ICFO-The Institute of Photonic Sciences

nachricht Compact broadband acoustic absorber with coherently coupled weak resonances
21.01.2020 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Intestinal inflammation: immune cells protect nerve cells after infection

22.01.2020 | Life Sciences

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>