Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How people work ... and the fingerprint mystery

06.01.2010
Why do we chew our food? Research has shown that it is not, as has long been presumed, to make chunks of food small enough to swallow without choking. Biomechanics, who have modelled the cohesive strength of food after a certain amount of chewing, have shown that we actually chew our food to ensure it is in a firm blob and, therefore, safe to swallow.

Writing in January's Physics World, Dr Roland Ennos, a biomechanic in the Faculty of Life Sciences at University of Manchester, explains how we need to look beyond obvious answers if we are to understand how our own bodies work.

Explaining why we swing our arms, why we have notched teeth, why our fingernails always break in the same direction, and, still puzzling, why we have fingerprints, Dr Ennos shows how rich the boundary between biology and physics is in, some counter-intuitive but, potentially significant discoveries.

On the fingerprint puzzle, we know that fingerprints are useful to identify people for security and crime detection, but no scientist has ever suggested that fingerprints evolved specifically for this purpose. It has been thought that fingerprints help us to grip more tightly to objects, but tests show that a rough surface does not actually increase the friction of soft materials such as skin.

Fingerprint friction is therefore a mystery that has left Dr Ennos's team testing a number of options - it could be that fingerprints act like the treads on tyres, removing water and so increasing friction under wet conditions. Another possibility is that prints also make the skin more flexible and stop it blistering.

As Dr Ennos writes, "The answers to these questions may appear obvious or even trivial, but further thought and experiment is revealing that our world is far more fascinating than we could have dreamed."

What's more, this sort of research, unlike many areas of physics, is not expensive or mathematically hard. "All you need is an enquiring mind, a bit of ingenuity and the courage to ask awkward questions," concludes Dr Ennos.

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>