Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peering into the Sun from the depths of the Gran Sasso: Borexino sheds light on solar neutrinos

05.11.2018

Borexino Collaboration publishes results of research into the Sun's 'ghost particles' in Nature

For more than ten years, the Borexino Detector located 1,400 meters below surface of the Italian Gran Sasso massif has been exploring the interior of our Sun. During this time, the project has provided amazing insights into how the star at the center of our solar system generates its energy.


Interior view of the Borexino detector

photo/©: Borexino collaboration

The scientists involved, including physicists from Johannes Gutenberg University Mainz (JGU), have now published a general analysis of the data they have collated on solar neutrinos. Neutrinos can penetrate all matter almost without leaving a trace and are thus difficult to detect. As a result, they have become known as 'ghost particles'.

They originate from a variety of sources, ranging from radioactive decay to astronomical objects and, in the case of solar neutrinos, from the Sun. The current paper in Nature not only describes the results of measurement of the solar neutrino spectrum but also uses this to deduce details about processes at the Sun's core, giving us an insight into the mechanism that has kept our Sun shining for billions of years.

The Borexino experiment is running at the Gran Sasso subterranean laboratory, which is maintained by the Italian National Institute for Nuclear Physics (INFN). Deep below the Earth's surface, the experimental facilities are well-shielded from cosmic rays.

Thus, the experiment is able to detect the weak signal produced by solar neutrinos. Borexino was originally conceived 30 years ago and began recording data in 2007. This extensive collaborative project involves institutes from Italy, Germany, France, Poland, the USA, and Russia.

Our understanding of the Sun's interior once again confirmed

The project's scientific success is primarily due to the outstanding radiopurity of the experiment. At the innermost core of the facility only infinitesimal amounts of natural radioactivity are present, i.e., only one trillion times fewer atoms per gram of the elements uranium and thorium than in the surrounding rock.

This extraordinary purity is crucial for precisely measuring the energy spectrum of solar neutrinos. It makes it possible to determine the rates of the fusion processes taking place inside the Sun, which are highly dependent on the temperature and elemental composition of the Sun's core.

Alongside this glimpse into the conditions deep within our star, the results also provide detailed insights into the oscillation process the neutrinos undergo inside the Sun. Oscillations describe the transformation of the three different types of neutrinos into each other, a process that was only conclusively confirmed for solar neutrinos in 2001. "Borexino’s findings far exceed the most optimistic predictions we made when we first started," said Gianpaolo Bellini, one of the pioneers of the INFN experiment.

Professor Michael Wurm, a physicist at JGU and a Borexino partner, affirmed this: "The new results generated by Borexino impressively confirm our current understanding of fusion processes inside the Sun.

Our measurements of the complete neutrino spectrum clearly demonstrate the effect solar matter has on the oscillations of the neutrinos produced at the Sun's center." While, at the lower end of the spectrum, neutrinos leave the Sun unaltered, at the upper end of the spectrum, the effect of the oscillations is intensified.

The Mainz Borexino team is mainly concerned with studying the background conditions caused by cosmic muons in the detector. "These muons are the only cosmic ray particles that make it through the 1.5-kilometer-thick mountain shield above the underground laboratory," said Wurm. Reducing this background signal is crucial to detecting the solar neutrinos. The work of the group from Mainz is supported by JGU’s Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA) Cluster of Excellence.

Other German partners involved in the Borexino Collaboration and the latest paper in Nature are the Technical University of Munich, Forschungszentrum Jülich, Universität Hamburg, RWTH Aachen University, and the Technische Universität Dresden.

Image:
http://www.uni-mainz.de/bilder_presse/08_physik_etap_borexino.jpg
Interior view of the Borexino detector
photo/©: Borexino collaboration

Wissenschaftliche Ansprechpartner:

Professor Dr. Michael Wurm
Experimental Particle and Astroparticle Physics (ETAP)
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23928
fax +49 6131 39-20210
e-mail: michael.wurm@uni-mainz.de
https://www.etap.physik.uni-mainz.de/research-groups/ex-borexino/

Originalpublikation:

The Borexino Collaboration, Comprehensive measurement of pp-chain solar neutrinos, Nature 562, 505-510, 24 October 2018,
DOI:10.1038/s41586-018-0624-y
https://www.nature.com/articles/s41586-018-0624-y

Weitere Informationen:

https://www.blogs.uni-mainz.de/fb08-iph-eng/ – JGU Institute of Physics ;
https://www.prisma.uni-mainz.de/ – PRISMA Cluster of Excellence ;
http://www.uni-mainz.de/presse/20002_ENG_HTML.php – press release "German Research Foundation approves new research group to determine neutrino mass hierarchy" (4 Jan. 2016) ;
http://www.uni-mainz.de/presse/18016_ENG_HTML.php – press release "Particle physicists from Mainz University participate in JUNO neutrino experiment" (28 Jan. 2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Borexino JGU Johannes Gutenberg-Universität Sun detector

More articles from Physics and Astronomy:

nachricht Astronomers discover class of strange objects near our galaxy's enormous black hole
16.01.2020 | University of California - Los Angeles

nachricht MOSHEMT—innovative transistor technology reaches record frequencies
16.01.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

Mutations in donors' stem cells may cause problems for cancer patients

17.01.2020 | Health and Medicine

How decisions unfold in a zebrafish brain

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>