Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paternity Test Fingers Earth as Moon’s Sole Parent

03.04.2012
Titanium paternity test fingers Earth as moon’s sole parent

A new chemical analysis of lunar material collected by Apollo astronauts in the 1970s conflicts with the widely held theory that a giant collision between Earth and a Mars-sized object gave birth to the moon 4.5 billion years ago.

In the giant-collision scenario, computer simulations suggest that the moon had two parents: Earth and a hypothetical planetary body that scientists call “Theia.” But a comparative analysis of titanium from the moon, Earth and meteorites, published by Junjun Zhang, graduate student in geophysical sciences at the University of Chicago, and four co-authors indicates the moon’s material came from Earth alone.

If two objects had given rise to the moon, “Just like in humans, the moon would have inherited some of the material from the Earth and some of the material from the impactor, approximately half and half,” said Nicolas Dauphas, associate professor in geophysical sciences at UChicago, and co-author of the study, which appears in the March 25 edition of Nature Geoscience.

“What we found is that the child does not look any different compared to the Earth,” Dauphas said. “It’s a child with only one parent, as far as we can tell.”

The research team based their analysis on titanium isotopes — forms of titanium that contain only slight subatomic variations. The researchers selected titanium for their study because the element is highly refractory. This means that titanium tends to remain in a solid or molten state rather than becoming a gas when exposed to tremendous heat. The resistance of titanium isotopes to vaporization makes it less likely that they would become incorporated by the Earth and the developing moon in equal amounts.

Titanium also contains different isotopic signatures forged in countless stellar explosions that occurred before the sun’s birth. These explosions flung subtly different titanium isotopes into interstellar space. Different objects in the newly forming solar system gobbled up those isotopes in different ways through collisions, leaving clues that let scientists infer where the solar materials including the moon came from.

Planetary DNA

“When we look at different bodies, different asteroids, there are different isotopic signatures. It’s like their different DNAs,” Dauphas said. Meteorites, which are pieces of asteroids that have fallen to Earth, contain large variations in titanium isotopes. Measurements of terrestrial and lunar samples show that “the moon has a strictly identical isotopic composition to the Earth,” he said.

“We thought that the moon had two parents, but when we look at the composition of the moon, it looks like it has only one parent,” Zhang said.

Zhang initially found variations in the titanium isotopic composition between the lunar and terrestrial samples. She then corrected the results for the effects of cosmic rays, which could have changed the titanium isotopic composition of the lunar samples.

The Earth and the moon are constantly bombarded by cosmic rays from the sun and from more distant sources in the galaxy. Earth’s atmosphere and magnetic field prevents most of these rays from reaching its surface, but the moon has no such protection.

“We compared the titanium isotopic composition with samarium and gadolinium since those two systems are very sensitive to the cosmic-ray effect,” Zhang said. The only compositional differences the scientists expected to see in samarium and gandolinium between Earth and moon would be the result of cosmic rays. “We found a very nice linear correlation between titanium and samarium or gadolinium,” she said.

Zhang’s titanium analyses greatly reinforce previous work by other researchers who came to the same conclusion after comparing terrestrial and lunar oxygen isotopes, which are less refractory and thus more likely to gasify during a giant impact than titanium.

Lunar Conundrum

Solving the conundrum of the moon’s origin probably will prove challenging because all of the alternative scenarios for the moon’s formation have drawbacks.

For example, it is possible that even though titanium is refractory, it might still have gasified in the giant impact and then became incorporated into the disk of Earth-orbiting material that developed into the moon. This might have erased the signature of the titanium from Theia, which could explain the UChicago team’s observations. The problem with this scenario is that the disk may have fallen back to Earth if too much material was exchanged between the two bodies.

An old idea, long abandoned, is that the moon arose via fission from a molten, rapidly rotating Earth following a giant impact. This idea explains the similarity between Earth and moon, but how such a large, concentrated mass could spin fast enough to split in two remains problematical.

According to a third scenario, Earth collided with an icy body lacking entirely in titanium. There are no bodies made purely of ice in the solar system, however. “They would always have a significant fraction of solid material, so you would still expect the object to deliver some titanium,” Dauphas said.

It’s also possible that Theia had the same composition as Earth. This is unlikely, however, because of the widely accepted view that the Earth incorporated material over tens of millions of years in collisions with smaller bodies that flew in from different regions of the developing solar system.

“We thought we knew what the moon was made of and how it formed, but even 40 years after Apollo, there is still a lot of science to do with those samples that are in curatorial facilities at NASA,” Dauphas said.

Citation: “The proto-Earth as a significant source of lunar material,” by Junjun Zhang, Nicolas Dauphas, Andrew M. Davis, Ingo Leya, and Alexei Fedkin, Nature Geoscience, Advance Online Publication, March 25, 2012.

Funding: National Aeronautics and Space Administration, National Science Foundation, Packard Foundation and the Swiss National Science Foundation.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>