Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paper offers breakthrough on blinking molecules phenomenon

12.08.2010
A new paper by University of Notre Dame physicist Boldizsár Jankó and colleagues offers an important new understanding of an enduring mystery in chemical physics.

More than a century ago, at the dawn of modern quantum mechanics, the Noble Prize-winning physicist Neils Bohr predicted so-called "quantum jumps." He predicted that these jumps would be due to electrons making transitions between discrete energy levels of individual atoms and molecules.

Although controversial in Bohr's time, such quantum jumps were experimentally observed, and his prediction verified, in the 1980s. More recently, with the development of single molecule imaging techniques in the early 1990s, it has been possible to observe similar jumps in individual molecules.

Experimentally, these quantum jumps translate to discrete interruptions of the continuous emission from single molecules, revealing a phenomenon known as fluorescent intermittency or "blinking."

However, while certain instances of blinking can be directly ascribed to Bohr's original quantum jumps, many more cases exist where the observed fluorescence intermittency does not follow his predictions. Specifically, in systems as diverse as fluorescent proteins, single molecules and light harvesting complexes, single organic fluorophores, and, most recently, individual inorganic nanostructures, clear deviations from Bohr's predictions occur.

As a consequence, virtually all known fluorophores, including fluorescent quantum dots, rods and wires, exhibit unexplainable episodes of intermittent blinking in their emission.

The prevailing wisdom in the field of quantum mechanics was that the on and off blinking episodes were not correlated. However, at a 2007 conference on the phenomenon sponsored by Notre Dame's Institute for Theoretical Sciences, which Jankó directs, Fernando Stefani of the University of Buenos Aires presented research suggesting that there was, in fact, correlation between these on and off events. No theoretical model available at that time was able to explain these correlations.

In a 2008 Nature Physics paper, Jankó and a group of researchers that included Notre Dame chemistry professor Ken Kuno, physics visiting assistant professor Pavel Frantsuzov and Nobel Laureate Rudolph Marcus suggested that the on- and off-time intervals of intermittent nanocrystal quantum dots follow universal power law distributions. The discovery provided Jankó and other researchers in the field with the first hints for developing a deeper insight into the physical mechanism behind the vast range of on- and off-times in the intermittency.

In a new paper appearing in the journal Nano Letters, Jankó, Frantsuzov and Notre Dame graduate student Sándor Volkán-Kascó reveal that they have developed a model for the blinking phenomena that confirms what Stefani observed experimentally. The finding is important confirmation that strong correlation exists between the on and off phenomenon.

If the blinking process could be controlled, quantum dots could, for example, provide better, more stable imaging of cancer cells; provide researcher with real-time images of a viral infection, such as HIV, within a cell; lead to the development of a new generation of brighter display screens for computers, cell phones and other electronic applications; and even improved lighting fixtures for homes and offices.

The Nano Letters paper represents another important step in understanding the origins of the blinking phenomenon and identifying ways to control the process.

Boldizsar Janko | EurekAlert!
Further information:
http://www.nd.edu

Further reports about: Nano blinking cell phone quantum dot quantum mechanics single molecule

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>