Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OU astrophysicist identifies composition of Earth-size planets in TRAPPIST-1 system

09.06.2017

A University of Oklahoma post-doctoral astrophysics researcher, Billy Quarles, has identified the possible compositions of the seven planets in the TRAPPIST-1 system. Using thousands of numerical simulations to identify the planets stable for millions of years, Quarles concluded that six of the seven planets are consistent with an Earth-like composition. The exception is TRAPPIST-1f, which has a mass of 25 percent water, suggesting that TRAPPIST-1e may be the best candidate for future habitability studies.

"The goal of exoplanetary astronomy is to find planets that are similar to Earth in composition and potentially habitable," said Quarles. "For thousands of years, astronomers have sought other worlds capable of sustaining life."


The lighter green indicates optimistic regions of the habitable zone and the darker green denotes more conservative limits.

Credit: University of Oklahoma

Quarles, a researcher in the Homer L. Dodge Department of Physics and Astronomy, OU College of Arts and Sciences, collaborated with scientists, E.V. Quintana, E. Lopez, J.E. Schlieder and T. Barclay at NASA Goddard Space Flight Center on the project.

Numerical simulations for this project were performed using the Pleiades Supercomputer provided by the NASA High-End Computing Program through the Ames Research Center and at the OU Supercomputing Center for Education and Research.

TRAPPIST-1 planets are more tightly spaced than in Kepler systems, which allow for transit timing variations with the photometric observations. These variations tell the researchers about the mass of the planets and the radii are measured through the eclipses.

Mass and radius measurements can then infer the density. By comparing the Earth's density (mostly rock) to the TRAPPIST-1 planets, Quarles can determine what the planets are likely composed of and provide insight into whether they are potentially habitable.

TRAPPIST-1f has the tightest constraints with 25 percent of its mass in water, which is rare given its radius. The concern of this planet is that the mass is 70 percent the mass of the Earth, but it is the same size as the Earth.

Because the radius is so large, the pressure turns the water to steam, and it is likely too hot for life as we know it. The search for planets with a composition as close to Earth's as possible is key for finding places that we could identify as being habitable. Quarles said he is continually learning about the planets and will investigate them further in his studies.

###

ABOUT TRAPPIST-1

TRAPPIST-1 is a nearby ultra-cool dwarf about 40 light-years away from Earth and host to a remarkable planetary system consisting of seven transiting planets. The seven planets are known as TRAPPIST 1b, c, d, e, f, g and h. For more information about TRAPPIST-1, visit https://exoplanets.nasa.gov/trappist1.

"Plausible Compositions of the Seven TRAPPIST-1 Planets Using Long-term Dynamical Simulations," was published in the Astrophysical Journal Letters. Funding for this project was provided by NASA Goddard Space Flight Center and University of Oklahoma. For more information, contact Quarles at bquarles@ou.edu.

Figure 1: Simulated orbits of the TRAPPIST-1 planets, where the lighter green indicates optimistic regions of the habitable zone and the darker green denotes more conservative limits.

Jana Smith | EurekAlert!

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>